Spaces:
Running
on
Zero
Running
on
Zero
Inverse
/
src
/diffusers
/pipelines
/deprecated
/spectrogram_diffusion
/pipeline_spectrogram_diffusion.py
| # Copyright 2022 The Music Spectrogram Diffusion Authors. | |
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from typing import Any, Callable, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ....models import T5FilmDecoder | |
| from ....schedulers import DDPMScheduler | |
| from ....utils import is_onnx_available, logging | |
| from ....utils.torch_utils import randn_tensor | |
| if is_onnx_available(): | |
| from ...onnx_utils import OnnxRuntimeModel | |
| from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline | |
| from .continuous_encoder import SpectrogramContEncoder | |
| from .notes_encoder import SpectrogramNotesEncoder | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| TARGET_FEATURE_LENGTH = 256 | |
| class SpectrogramDiffusionPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for unconditional audio generation. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| notes_encoder ([`SpectrogramNotesEncoder`]): | |
| continuous_encoder ([`SpectrogramContEncoder`]): | |
| decoder ([`T5FilmDecoder`]): | |
| A [`T5FilmDecoder`] to denoise the encoded audio latents. | |
| scheduler ([`DDPMScheduler`]): | |
| A scheduler to be used in combination with `decoder` to denoise the encoded audio latents. | |
| melgan ([`OnnxRuntimeModel`]): | |
| """ | |
| _optional_components = ["melgan"] | |
| def __init__( | |
| self, | |
| notes_encoder: SpectrogramNotesEncoder, | |
| continuous_encoder: SpectrogramContEncoder, | |
| decoder: T5FilmDecoder, | |
| scheduler: DDPMScheduler, | |
| melgan: OnnxRuntimeModel if is_onnx_available() else Any, | |
| ) -> None: | |
| super().__init__() | |
| # From MELGAN | |
| self.min_value = math.log(1e-5) # Matches MelGAN training. | |
| self.max_value = 4.0 # Largest value for most examples | |
| self.n_dims = 128 | |
| self.register_modules( | |
| notes_encoder=notes_encoder, | |
| continuous_encoder=continuous_encoder, | |
| decoder=decoder, | |
| scheduler=scheduler, | |
| melgan=melgan, | |
| ) | |
| def scale_features(self, features, output_range=(-1.0, 1.0), clip=False): | |
| """Linearly scale features to network outputs range.""" | |
| min_out, max_out = output_range | |
| if clip: | |
| features = torch.clip(features, self.min_value, self.max_value) | |
| # Scale to [0, 1]. | |
| zero_one = (features - self.min_value) / (self.max_value - self.min_value) | |
| # Scale to [min_out, max_out]. | |
| return zero_one * (max_out - min_out) + min_out | |
| def scale_to_features(self, outputs, input_range=(-1.0, 1.0), clip=False): | |
| """Invert by linearly scaling network outputs to features range.""" | |
| min_out, max_out = input_range | |
| outputs = torch.clip(outputs, min_out, max_out) if clip else outputs | |
| # Scale to [0, 1]. | |
| zero_one = (outputs - min_out) / (max_out - min_out) | |
| # Scale to [self.min_value, self.max_value]. | |
| return zero_one * (self.max_value - self.min_value) + self.min_value | |
| def encode(self, input_tokens, continuous_inputs, continuous_mask): | |
| tokens_mask = input_tokens > 0 | |
| tokens_encoded, tokens_mask = self.notes_encoder( | |
| encoder_input_tokens=input_tokens, encoder_inputs_mask=tokens_mask | |
| ) | |
| continuous_encoded, continuous_mask = self.continuous_encoder( | |
| encoder_inputs=continuous_inputs, encoder_inputs_mask=continuous_mask | |
| ) | |
| return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] | |
| def decode(self, encodings_and_masks, input_tokens, noise_time): | |
| timesteps = noise_time | |
| if not torch.is_tensor(timesteps): | |
| timesteps = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device) | |
| elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(input_tokens.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device) | |
| logits = self.decoder( | |
| encodings_and_masks=encodings_and_masks, decoder_input_tokens=input_tokens, decoder_noise_time=timesteps | |
| ) | |
| return logits | |
| def __call__( | |
| self, | |
| input_tokens: List[List[int]], | |
| generator: Optional[torch.Generator] = None, | |
| num_inference_steps: int = 100, | |
| return_dict: bool = True, | |
| output_type: str = "np", | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: int = 1, | |
| ) -> Union[AudioPipelineOutput, Tuple]: | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| input_tokens (`List[List[int]]`): | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality audio at the | |
| expense of slower inference. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. | |
| output_type (`str`, *optional*, defaults to `"np"`): | |
| The output format of the generated audio. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Example: | |
| ```py | |
| >>> from diffusers import SpectrogramDiffusionPipeline, MidiProcessor | |
| >>> pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
| >>> pipe = pipe.to("cuda") | |
| >>> processor = MidiProcessor() | |
| >>> # Download MIDI from: wget http://www.piano-midi.de/midis/beethoven/beethoven_hammerklavier_2.mid | |
| >>> output = pipe(processor("beethoven_hammerklavier_2.mid")) | |
| >>> audio = output.audios[0] | |
| ``` | |
| Returns: | |
| [`pipelines.AudioPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated audio. | |
| """ | |
| pred_mel = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.float32) | |
| full_pred_mel = np.zeros([1, 0, self.n_dims], np.float32) | |
| ones = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device) | |
| for i, encoder_input_tokens in enumerate(input_tokens): | |
| if i == 0: | |
| encoder_continuous_inputs = torch.from_numpy(pred_mel[:1].copy()).to( | |
| device=self.device, dtype=self.decoder.dtype | |
| ) | |
| # The first chunk has no previous context. | |
| encoder_continuous_mask = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device) | |
| else: | |
| # The full song pipeline does not feed in a context feature, so the mask | |
| # will be all 0s after the feature converter. Because we know we're | |
| # feeding in a full context chunk from the previous prediction, set it | |
| # to all 1s. | |
| encoder_continuous_mask = ones | |
| encoder_continuous_inputs = self.scale_features( | |
| encoder_continuous_inputs, output_range=[-1.0, 1.0], clip=True | |
| ) | |
| encodings_and_masks = self.encode( | |
| input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device), | |
| continuous_inputs=encoder_continuous_inputs, | |
| continuous_mask=encoder_continuous_mask, | |
| ) | |
| # Sample encoder_continuous_inputs shaped gaussian noise to begin loop | |
| x = randn_tensor( | |
| shape=encoder_continuous_inputs.shape, | |
| generator=generator, | |
| device=self.device, | |
| dtype=self.decoder.dtype, | |
| ) | |
| # set step values | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| # Denoising diffusion loop | |
| for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
| output = self.decode( | |
| encodings_and_masks=encodings_and_masks, | |
| input_tokens=x, | |
| noise_time=t / self.scheduler.config.num_train_timesteps, # rescale to [0, 1) | |
| ) | |
| # Compute previous output: x_t -> x_t-1 | |
| x = self.scheduler.step(output, t, x, generator=generator).prev_sample | |
| mel = self.scale_to_features(x, input_range=[-1.0, 1.0]) | |
| encoder_continuous_inputs = mel[:1] | |
| pred_mel = mel.cpu().float().numpy() | |
| full_pred_mel = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1) | |
| # call the callback, if provided | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, full_pred_mel) | |
| logger.info("Generated segment", i) | |
| if output_type == "np" and not is_onnx_available(): | |
| raise ValueError( | |
| "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." | |
| ) | |
| elif output_type == "np" and self.melgan is None: | |
| raise ValueError( | |
| "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." | |
| ) | |
| if output_type == "np": | |
| output = self.melgan(input_features=full_pred_mel.astype(np.float32)) | |
| else: | |
| output = full_pred_mel | |
| if not return_dict: | |
| return (output,) | |
| return AudioPipelineOutput(audios=output) | |