Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| State dict utilities: utility methods for converting state dicts easily | |
| """ | |
| import enum | |
| from .logging import get_logger | |
| logger = get_logger(__name__) | |
| class StateDictType(enum.Enum): | |
| """ | |
| The mode to use when converting state dicts. | |
| """ | |
| DIFFUSERS_OLD = "diffusers_old" | |
| KOHYA_SS = "kohya_ss" | |
| PEFT = "peft" | |
| DIFFUSERS = "diffusers" | |
| # We need to define a proper mapping for Unet since it uses different output keys than text encoder | |
| # e.g. to_q_lora -> q_proj / to_q | |
| UNET_TO_DIFFUSERS = { | |
| ".to_out_lora.up": ".to_out.0.lora_B", | |
| ".to_out_lora.down": ".to_out.0.lora_A", | |
| ".to_q_lora.down": ".to_q.lora_A", | |
| ".to_q_lora.up": ".to_q.lora_B", | |
| ".to_k_lora.down": ".to_k.lora_A", | |
| ".to_k_lora.up": ".to_k.lora_B", | |
| ".to_v_lora.down": ".to_v.lora_A", | |
| ".to_v_lora.up": ".to_v.lora_B", | |
| ".lora.up": ".lora_B", | |
| ".lora.down": ".lora_A", | |
| ".to_out.lora_magnitude_vector": ".to_out.0.lora_magnitude_vector", | |
| } | |
| DIFFUSERS_TO_PEFT = { | |
| ".q_proj.lora_linear_layer.up": ".q_proj.lora_B", | |
| ".q_proj.lora_linear_layer.down": ".q_proj.lora_A", | |
| ".k_proj.lora_linear_layer.up": ".k_proj.lora_B", | |
| ".k_proj.lora_linear_layer.down": ".k_proj.lora_A", | |
| ".v_proj.lora_linear_layer.up": ".v_proj.lora_B", | |
| ".v_proj.lora_linear_layer.down": ".v_proj.lora_A", | |
| ".out_proj.lora_linear_layer.up": ".out_proj.lora_B", | |
| ".out_proj.lora_linear_layer.down": ".out_proj.lora_A", | |
| ".lora_linear_layer.up": ".lora_B", | |
| ".lora_linear_layer.down": ".lora_A", | |
| "text_projection.lora.down.weight": "text_projection.lora_A.weight", | |
| "text_projection.lora.up.weight": "text_projection.lora_B.weight", | |
| } | |
| DIFFUSERS_OLD_TO_PEFT = { | |
| ".to_q_lora.up": ".q_proj.lora_B", | |
| ".to_q_lora.down": ".q_proj.lora_A", | |
| ".to_k_lora.up": ".k_proj.lora_B", | |
| ".to_k_lora.down": ".k_proj.lora_A", | |
| ".to_v_lora.up": ".v_proj.lora_B", | |
| ".to_v_lora.down": ".v_proj.lora_A", | |
| ".to_out_lora.up": ".out_proj.lora_B", | |
| ".to_out_lora.down": ".out_proj.lora_A", | |
| ".lora_linear_layer.up": ".lora_B", | |
| ".lora_linear_layer.down": ".lora_A", | |
| } | |
| PEFT_TO_DIFFUSERS = { | |
| ".q_proj.lora_B": ".q_proj.lora_linear_layer.up", | |
| ".q_proj.lora_A": ".q_proj.lora_linear_layer.down", | |
| ".k_proj.lora_B": ".k_proj.lora_linear_layer.up", | |
| ".k_proj.lora_A": ".k_proj.lora_linear_layer.down", | |
| ".v_proj.lora_B": ".v_proj.lora_linear_layer.up", | |
| ".v_proj.lora_A": ".v_proj.lora_linear_layer.down", | |
| ".out_proj.lora_B": ".out_proj.lora_linear_layer.up", | |
| ".out_proj.lora_A": ".out_proj.lora_linear_layer.down", | |
| "to_k.lora_A": "to_k.lora.down", | |
| "to_k.lora_B": "to_k.lora.up", | |
| "to_q.lora_A": "to_q.lora.down", | |
| "to_q.lora_B": "to_q.lora.up", | |
| "to_v.lora_A": "to_v.lora.down", | |
| "to_v.lora_B": "to_v.lora.up", | |
| "to_out.0.lora_A": "to_out.0.lora.down", | |
| "to_out.0.lora_B": "to_out.0.lora.up", | |
| } | |
| DIFFUSERS_OLD_TO_DIFFUSERS = { | |
| ".to_q_lora.up": ".q_proj.lora_linear_layer.up", | |
| ".to_q_lora.down": ".q_proj.lora_linear_layer.down", | |
| ".to_k_lora.up": ".k_proj.lora_linear_layer.up", | |
| ".to_k_lora.down": ".k_proj.lora_linear_layer.down", | |
| ".to_v_lora.up": ".v_proj.lora_linear_layer.up", | |
| ".to_v_lora.down": ".v_proj.lora_linear_layer.down", | |
| ".to_out_lora.up": ".out_proj.lora_linear_layer.up", | |
| ".to_out_lora.down": ".out_proj.lora_linear_layer.down", | |
| ".to_k.lora_magnitude_vector": ".k_proj.lora_magnitude_vector", | |
| ".to_v.lora_magnitude_vector": ".v_proj.lora_magnitude_vector", | |
| ".to_q.lora_magnitude_vector": ".q_proj.lora_magnitude_vector", | |
| ".to_out.lora_magnitude_vector": ".out_proj.lora_magnitude_vector", | |
| } | |
| PEFT_TO_KOHYA_SS = { | |
| "lora_A": "lora_down", | |
| "lora_B": "lora_up", | |
| # This is not a comprehensive dict as kohya format requires replacing `.` with `_` in keys, | |
| # adding prefixes and adding alpha values | |
| # Check `convert_state_dict_to_kohya` for more | |
| } | |
| PEFT_STATE_DICT_MAPPINGS = { | |
| StateDictType.DIFFUSERS_OLD: DIFFUSERS_OLD_TO_PEFT, | |
| StateDictType.DIFFUSERS: DIFFUSERS_TO_PEFT, | |
| } | |
| DIFFUSERS_STATE_DICT_MAPPINGS = { | |
| StateDictType.DIFFUSERS_OLD: DIFFUSERS_OLD_TO_DIFFUSERS, | |
| StateDictType.PEFT: PEFT_TO_DIFFUSERS, | |
| } | |
| KOHYA_STATE_DICT_MAPPINGS = {StateDictType.PEFT: PEFT_TO_KOHYA_SS} | |
| KEYS_TO_ALWAYS_REPLACE = { | |
| ".processor.": ".", | |
| } | |
| def convert_state_dict(state_dict, mapping): | |
| r""" | |
| Simply iterates over the state dict and replaces the patterns in `mapping` with the corresponding values. | |
| Args: | |
| state_dict (`dict[str, torch.Tensor]`): | |
| The state dict to convert. | |
| mapping (`dict[str, str]`): | |
| The mapping to use for conversion, the mapping should be a dictionary with the following structure: | |
| - key: the pattern to replace | |
| - value: the pattern to replace with | |
| Returns: | |
| converted_state_dict (`dict`) | |
| The converted state dict. | |
| """ | |
| converted_state_dict = {} | |
| for k, v in state_dict.items(): | |
| # First, filter out the keys that we always want to replace | |
| for pattern in KEYS_TO_ALWAYS_REPLACE.keys(): | |
| if pattern in k: | |
| new_pattern = KEYS_TO_ALWAYS_REPLACE[pattern] | |
| k = k.replace(pattern, new_pattern) | |
| for pattern in mapping.keys(): | |
| if pattern in k: | |
| new_pattern = mapping[pattern] | |
| k = k.replace(pattern, new_pattern) | |
| break | |
| converted_state_dict[k] = v | |
| return converted_state_dict | |
| def convert_state_dict_to_peft(state_dict, original_type=None, **kwargs): | |
| r""" | |
| Converts a state dict to the PEFT format The state dict can be from previous diffusers format (`OLD_DIFFUSERS`), or | |
| new diffusers format (`DIFFUSERS`). The method only supports the conversion from diffusers old/new to PEFT for now. | |
| Args: | |
| state_dict (`dict[str, torch.Tensor]`): | |
| The state dict to convert. | |
| original_type (`StateDictType`, *optional*): | |
| The original type of the state dict, if not provided, the method will try to infer it automatically. | |
| """ | |
| if original_type is None: | |
| # Old diffusers to PEFT | |
| if any("to_out_lora" in k for k in state_dict.keys()): | |
| original_type = StateDictType.DIFFUSERS_OLD | |
| elif any("lora_linear_layer" in k for k in state_dict.keys()): | |
| original_type = StateDictType.DIFFUSERS | |
| else: | |
| raise ValueError("Could not automatically infer state dict type") | |
| if original_type not in PEFT_STATE_DICT_MAPPINGS.keys(): | |
| raise ValueError(f"Original type {original_type} is not supported") | |
| mapping = PEFT_STATE_DICT_MAPPINGS[original_type] | |
| return convert_state_dict(state_dict, mapping) | |
| def convert_state_dict_to_diffusers(state_dict, original_type=None, **kwargs): | |
| r""" | |
| Converts a state dict to new diffusers format. The state dict can be from previous diffusers format | |
| (`OLD_DIFFUSERS`), or PEFT format (`PEFT`) or new diffusers format (`DIFFUSERS`). In the last case the method will | |
| return the state dict as is. | |
| The method only supports the conversion from diffusers old, PEFT to diffusers new for now. | |
| Args: | |
| state_dict (`dict[str, torch.Tensor]`): | |
| The state dict to convert. | |
| original_type (`StateDictType`, *optional*): | |
| The original type of the state dict, if not provided, the method will try to infer it automatically. | |
| kwargs (`dict`, *args*): | |
| Additional arguments to pass to the method. | |
| - **adapter_name**: For example, in case of PEFT, some keys will be pre-pended | |
| with the adapter name, therefore needs a special handling. By default PEFT also takes care of that in | |
| `get_peft_model_state_dict` method: | |
| https://github.com/huggingface/peft/blob/ba0477f2985b1ba311b83459d29895c809404e99/src/peft/utils/save_and_load.py#L92 | |
| but we add it here in case we don't want to rely on that method. | |
| """ | |
| peft_adapter_name = kwargs.pop("adapter_name", None) | |
| if peft_adapter_name is not None: | |
| peft_adapter_name = "." + peft_adapter_name | |
| else: | |
| peft_adapter_name = "" | |
| if original_type is None: | |
| # Old diffusers to PEFT | |
| if any("to_out_lora" in k for k in state_dict.keys()): | |
| original_type = StateDictType.DIFFUSERS_OLD | |
| elif any(f".lora_A{peft_adapter_name}.weight" in k for k in state_dict.keys()): | |
| original_type = StateDictType.PEFT | |
| elif any("lora_linear_layer" in k for k in state_dict.keys()): | |
| # nothing to do | |
| return state_dict | |
| else: | |
| raise ValueError("Could not automatically infer state dict type") | |
| if original_type not in DIFFUSERS_STATE_DICT_MAPPINGS.keys(): | |
| raise ValueError(f"Original type {original_type} is not supported") | |
| mapping = DIFFUSERS_STATE_DICT_MAPPINGS[original_type] | |
| return convert_state_dict(state_dict, mapping) | |
| def convert_unet_state_dict_to_peft(state_dict): | |
| r""" | |
| Converts a state dict from UNet format to diffusers format - i.e. by removing some keys | |
| """ | |
| mapping = UNET_TO_DIFFUSERS | |
| return convert_state_dict(state_dict, mapping) | |
| def convert_all_state_dict_to_peft(state_dict): | |
| r""" | |
| Attempts to first `convert_state_dict_to_peft`, and if it doesn't detect `lora_linear_layer` for a valid | |
| `DIFFUSERS` LoRA for example, attempts to exclusively convert the Unet `convert_unet_state_dict_to_peft` | |
| """ | |
| try: | |
| peft_dict = convert_state_dict_to_peft(state_dict) | |
| except Exception as e: | |
| if str(e) == "Could not automatically infer state dict type": | |
| peft_dict = convert_unet_state_dict_to_peft(state_dict) | |
| else: | |
| raise | |
| if not any("lora_A" in key or "lora_B" in key for key in peft_dict.keys()): | |
| raise ValueError("Your LoRA was not converted to PEFT") | |
| return peft_dict | |
| def convert_state_dict_to_kohya(state_dict, original_type=None, **kwargs): | |
| r""" | |
| Converts a `PEFT` state dict to `Kohya` format that can be used in AUTOMATIC1111, ComfyUI, SD.Next, InvokeAI, etc. | |
| The method only supports the conversion from PEFT to Kohya for now. | |
| Args: | |
| state_dict (`dict[str, torch.Tensor]`): | |
| The state dict to convert. | |
| original_type (`StateDictType`, *optional*): | |
| The original type of the state dict, if not provided, the method will try to infer it automatically. | |
| kwargs (`dict`, *args*): | |
| Additional arguments to pass to the method. | |
| - **adapter_name**: For example, in case of PEFT, some keys will be pre-pended | |
| with the adapter name, therefore needs a special handling. By default PEFT also takes care of that in | |
| `get_peft_model_state_dict` method: | |
| https://github.com/huggingface/peft/blob/ba0477f2985b1ba311b83459d29895c809404e99/src/peft/utils/save_and_load.py#L92 | |
| but we add it here in case we don't want to rely on that method. | |
| """ | |
| try: | |
| import torch | |
| except ImportError: | |
| logger.error("Converting PEFT state dicts to Kohya requires torch to be installed.") | |
| raise | |
| peft_adapter_name = kwargs.pop("adapter_name", None) | |
| if peft_adapter_name is not None: | |
| peft_adapter_name = "." + peft_adapter_name | |
| else: | |
| peft_adapter_name = "" | |
| if original_type is None: | |
| if any(f".lora_A{peft_adapter_name}.weight" in k for k in state_dict.keys()): | |
| original_type = StateDictType.PEFT | |
| if original_type not in KOHYA_STATE_DICT_MAPPINGS.keys(): | |
| raise ValueError(f"Original type {original_type} is not supported") | |
| # Use the convert_state_dict function with the appropriate mapping | |
| kohya_ss_partial_state_dict = convert_state_dict(state_dict, KOHYA_STATE_DICT_MAPPINGS[StateDictType.PEFT]) | |
| kohya_ss_state_dict = {} | |
| # Additional logic for replacing header, alpha parameters `.` with `_` in all keys | |
| for kohya_key, weight in kohya_ss_partial_state_dict.items(): | |
| if "text_encoder_2." in kohya_key: | |
| kohya_key = kohya_key.replace("text_encoder_2.", "lora_te2.") | |
| elif "text_encoder." in kohya_key: | |
| kohya_key = kohya_key.replace("text_encoder.", "lora_te1.") | |
| elif "unet" in kohya_key: | |
| kohya_key = kohya_key.replace("unet", "lora_unet") | |
| elif "lora_magnitude_vector" in kohya_key: | |
| kohya_key = kohya_key.replace("lora_magnitude_vector", "dora_scale") | |
| kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2) | |
| kohya_key = kohya_key.replace(peft_adapter_name, "") # Kohya doesn't take names | |
| kohya_ss_state_dict[kohya_key] = weight | |
| if "lora_down" in kohya_key: | |
| alpha_key = f'{kohya_key.split(".")[0]}.alpha' | |
| kohya_ss_state_dict[alpha_key] = torch.tensor(len(weight)) | |
| return kohya_ss_state_dict | |