Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Generic utilities | |
| """ | |
| from collections import OrderedDict | |
| from dataclasses import fields, is_dataclass | |
| from typing import Any, Tuple | |
| import numpy as np | |
| from .import_utils import is_torch_available, is_torch_version | |
| def is_tensor(x) -> bool: | |
| """ | |
| Tests if `x` is a `torch.Tensor` or `np.ndarray`. | |
| """ | |
| if is_torch_available(): | |
| import torch | |
| if isinstance(x, torch.Tensor): | |
| return True | |
| return isinstance(x, np.ndarray) | |
| class BaseOutput(OrderedDict): | |
| """ | |
| Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a | |
| tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular | |
| Python dictionary. | |
| <Tip warning={true}> | |
| You can't unpack a [`BaseOutput`] directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple | |
| first. | |
| </Tip> | |
| """ | |
| def __init_subclass__(cls) -> None: | |
| """Register subclasses as pytree nodes. | |
| This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with | |
| `static_graph=True` with modules that output `ModelOutput` subclasses. | |
| """ | |
| if is_torch_available(): | |
| import torch.utils._pytree | |
| if is_torch_version("<", "2.2"): | |
| torch.utils._pytree._register_pytree_node( | |
| cls, | |
| torch.utils._pytree._dict_flatten, | |
| lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)), | |
| ) | |
| else: | |
| torch.utils._pytree.register_pytree_node( | |
| cls, | |
| torch.utils._pytree._dict_flatten, | |
| lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)), | |
| ) | |
| def __post_init__(self) -> None: | |
| class_fields = fields(self) | |
| # Safety and consistency checks | |
| if not len(class_fields): | |
| raise ValueError(f"{self.__class__.__name__} has no fields.") | |
| first_field = getattr(self, class_fields[0].name) | |
| other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) | |
| if other_fields_are_none and isinstance(first_field, dict): | |
| for key, value in first_field.items(): | |
| self[key] = value | |
| else: | |
| for field in class_fields: | |
| v = getattr(self, field.name) | |
| if v is not None: | |
| self[field.name] = v | |
| def __delitem__(self, *args, **kwargs): | |
| raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") | |
| def setdefault(self, *args, **kwargs): | |
| raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") | |
| def pop(self, *args, **kwargs): | |
| raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") | |
| def update(self, *args, **kwargs): | |
| raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") | |
| def __getitem__(self, k: Any) -> Any: | |
| if isinstance(k, str): | |
| inner_dict = dict(self.items()) | |
| return inner_dict[k] | |
| else: | |
| return self.to_tuple()[k] | |
| def __setattr__(self, name: Any, value: Any) -> None: | |
| if name in self.keys() and value is not None: | |
| # Don't call self.__setitem__ to avoid recursion errors | |
| super().__setitem__(name, value) | |
| super().__setattr__(name, value) | |
| def __setitem__(self, key, value): | |
| # Will raise a KeyException if needed | |
| super().__setitem__(key, value) | |
| # Don't call self.__setattr__ to avoid recursion errors | |
| super().__setattr__(key, value) | |
| def __reduce__(self): | |
| if not is_dataclass(self): | |
| return super().__reduce__() | |
| callable, _args, *remaining = super().__reduce__() | |
| args = tuple(getattr(self, field.name) for field in fields(self)) | |
| return callable, args, *remaining | |
| def to_tuple(self) -> Tuple[Any, ...]: | |
| """ | |
| Convert self to a tuple containing all the attributes/keys that are not `None`. | |
| """ | |
| return tuple(self[k] for k in self.keys()) | |
 
			
