Spaces:
Running
on
Zero
Running
on
Zero
| # This file is autogenerated by the command `make fix-copies`, do not edit. | |
| from ..utils import DummyObject, requires_backends | |
| class AsymmetricAutoencoderKL(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AuraFlowTransformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoencoderKL(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoencoderKLCogVideoX(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoencoderKLTemporalDecoder(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoencoderOobleck(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoencoderTiny(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class CogVideoXTransformer3DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class CogView3PlusTransformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ConsistencyDecoderVAE(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ControlNetXSAdapter(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DiTTransformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class FluxControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class FluxMultiControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class FluxTransformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class HunyuanDiT2DControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class HunyuanDiT2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class HunyuanDiT2DMultiControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class I2VGenXLUNet(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class Kandinsky3UNet(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class LatteTransformer3DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class LuminaNextDiT2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ModelMixin(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class MotionAdapter(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class MultiAdapter(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class PixArtTransformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class PriorTransformer(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class SD3ControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class SD3MultiControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class SD3Transformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class SparseControlNetModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class StableAudioDiTModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class T2IAdapter(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class T5FilmDecoder(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class Transformer2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNet1DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNet2DConditionModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNet2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNet3DConditionModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNetControlNetXSModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNetMotionModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UNetSpatioTemporalConditionModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UVit2DModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class VQModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def get_constant_schedule(*args, **kwargs): | |
| requires_backends(get_constant_schedule, ["torch"]) | |
| def get_constant_schedule_with_warmup(*args, **kwargs): | |
| requires_backends(get_constant_schedule_with_warmup, ["torch"]) | |
| def get_cosine_schedule_with_warmup(*args, **kwargs): | |
| requires_backends(get_cosine_schedule_with_warmup, ["torch"]) | |
| def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs): | |
| requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"]) | |
| def get_linear_schedule_with_warmup(*args, **kwargs): | |
| requires_backends(get_linear_schedule_with_warmup, ["torch"]) | |
| def get_polynomial_decay_schedule_with_warmup(*args, **kwargs): | |
| requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"]) | |
| def get_scheduler(*args, **kwargs): | |
| requires_backends(get_scheduler, ["torch"]) | |
| class AudioPipelineOutput(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoPipelineForImage2Image(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoPipelineForInpainting(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AutoPipelineForText2Image(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class BlipDiffusionControlNetPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class BlipDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class CLIPImageProjection(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ConsistencyModelPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DanceDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDIMPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDPMPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DiTPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ImagePipelineOutput(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class KarrasVePipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class LDMPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class LDMSuperResolutionPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class PNDMPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class RePaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ScoreSdeVePipeline(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class StableDiffusionMixin(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DiffusersQuantizer(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class AmusedScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class CMStochasticIterativeScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class CogVideoXDDIMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class CogVideoXDPMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDIMInverseScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDIMParallelScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDIMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDPMParallelScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDPMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DDPMWuerstchenScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DEISMultistepScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DPMSolverMultistepInverseScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DPMSolverMultistepScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class DPMSolverSinglestepScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class EDMDPMSolverMultistepScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class EDMEulerScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class EulerAncestralDiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class EulerDiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class FlowMatchEulerDiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class FlowMatchHeunDiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class HeunDiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class IPNDMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class KarrasVeScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class KDPM2AncestralDiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class KDPM2DiscreteScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class LCMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class PNDMScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class RePaintScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class SASolverScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class SchedulerMixin(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class ScoreSdeVeScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class TCDScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UnCLIPScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class UniPCMultistepScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class VQDiffusionScheduler(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| class EMAModel(metaclass=DummyObject): | |
| _backends = ["torch"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch"]) | |