Spaces:
Running
on
Zero
Running
on
Zero
| import datetime | |
| import logging | |
| import time | |
| from .dist_util import get_dist_info, master_only | |
| initialized_logger = {} | |
| class AvgTimer(): | |
| def __init__(self, window=200): | |
| self.window = window # average window | |
| self.current_time = 0 | |
| self.total_time = 0 | |
| self.count = 0 | |
| self.avg_time = 0 | |
| self.start() | |
| def start(self): | |
| self.start_time = self.tic = time.time() | |
| def record(self): | |
| self.count += 1 | |
| self.toc = time.time() | |
| self.current_time = self.toc - self.tic | |
| self.total_time += self.current_time | |
| # calculate average time | |
| self.avg_time = self.total_time / self.count | |
| # reset | |
| if self.count > self.window: | |
| self.count = 0 | |
| self.total_time = 0 | |
| self.tic = time.time() | |
| def get_current_time(self): | |
| return self.current_time | |
| def get_avg_time(self): | |
| return self.avg_time | |
| class MessageLogger(): | |
| """Message logger for printing. | |
| Args: | |
| opt (dict): Config. It contains the following keys: | |
| name (str): Exp name. | |
| logger (dict): Contains 'print_freq' (str) for logger interval. | |
| train (dict): Contains 'total_iter' (int) for total iters. | |
| use_tb_logger (bool): Use tensorboard logger. | |
| start_iter (int): Start iter. Default: 1. | |
| tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None. | |
| """ | |
| def __init__(self, opt, start_iter=1, tb_logger=None): | |
| self.exp_name = opt['name'] | |
| self.interval = opt['logger']['print_freq'] | |
| self.start_iter = start_iter | |
| self.max_iters = opt['train']['total_iter'] | |
| self.use_tb_logger = opt['logger']['use_tb_logger'] | |
| self.tb_logger = tb_logger | |
| self.start_time = time.time() | |
| self.logger = get_root_logger() | |
| def reset_start_time(self): | |
| self.start_time = time.time() | |
| def __call__(self, log_vars): | |
| """Format logging message. | |
| Args: | |
| log_vars (dict): It contains the following keys: | |
| epoch (int): Epoch number. | |
| iter (int): Current iter. | |
| lrs (list): List for learning rates. | |
| time (float): Iter time. | |
| data_time (float): Data time for each iter. | |
| """ | |
| # epoch, iter, learning rates | |
| epoch = log_vars.pop('epoch') | |
| current_iter = log_vars.pop('iter') | |
| lrs = log_vars.pop('lrs') | |
| message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, iter:{current_iter:8,d}, lr:(') | |
| for v in lrs: | |
| message += f'{v:.3e},' | |
| message += ')] ' | |
| # time and estimated time | |
| if 'time' in log_vars.keys(): | |
| iter_time = log_vars.pop('time') | |
| data_time = log_vars.pop('data_time') | |
| total_time = time.time() - self.start_time | |
| time_sec_avg = total_time / (current_iter - self.start_iter + 1) | |
| eta_sec = time_sec_avg * (self.max_iters - current_iter - 1) | |
| eta_str = str(datetime.timedelta(seconds=int(eta_sec))) | |
| message += f'[eta: {eta_str}, ' | |
| message += f'time (data): {iter_time:.3f} ({data_time:.3f})] ' | |
| # other items, especially losses | |
| for k, v in log_vars.items(): | |
| message += f'{k}: {v:.4e} ' | |
| # tensorboard logger | |
| if self.use_tb_logger and 'debug' not in self.exp_name: | |
| if k.startswith('l_'): | |
| self.tb_logger.add_scalar(f'losses/{k}', v, current_iter) | |
| else: | |
| self.tb_logger.add_scalar(k, v, current_iter) | |
| self.logger.info(message) | |
| def init_tb_logger(log_dir): | |
| from torch.utils.tensorboard import SummaryWriter | |
| tb_logger = SummaryWriter(log_dir=log_dir) | |
| return tb_logger | |
| def init_wandb_logger(opt): | |
| """We now only use wandb to sync tensorboard log.""" | |
| import wandb | |
| logger = get_root_logger() | |
| project = opt['logger']['wandb']['project'] | |
| resume_id = opt['logger']['wandb'].get('resume_id') | |
| if resume_id: | |
| wandb_id = resume_id | |
| resume = 'allow' | |
| logger.warning(f'Resume wandb logger with id={wandb_id}.') | |
| else: | |
| wandb_id = wandb.util.generate_id() | |
| resume = 'never' | |
| wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True) | |
| logger.info(f'Use wandb logger with id={wandb_id}; project={project}.') | |
| def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None): | |
| """Get the root logger. | |
| The logger will be initialized if it has not been initialized. By default a | |
| StreamHandler will be added. If `log_file` is specified, a FileHandler will | |
| also be added. | |
| Args: | |
| logger_name (str): root logger name. Default: 'basicsr'. | |
| log_file (str | None): The log filename. If specified, a FileHandler | |
| will be added to the root logger. | |
| log_level (int): The root logger level. Note that only the process of | |
| rank 0 is affected, while other processes will set the level to | |
| "Error" and be silent most of the time. | |
| Returns: | |
| logging.Logger: The root logger. | |
| """ | |
| logger = logging.getLogger(logger_name) | |
| # if the logger has been initialized, just return it | |
| if logger_name in initialized_logger: | |
| return logger | |
| format_str = '%(asctime)s %(levelname)s: %(message)s' | |
| stream_handler = logging.StreamHandler() | |
| stream_handler.setFormatter(logging.Formatter(format_str)) | |
| logger.addHandler(stream_handler) | |
| logger.propagate = False | |
| rank, _ = get_dist_info() | |
| if rank != 0: | |
| logger.setLevel('ERROR') | |
| elif log_file is not None: | |
| logger.setLevel(log_level) | |
| # add file handler | |
| file_handler = logging.FileHandler(log_file, 'w') | |
| file_handler.setFormatter(logging.Formatter(format_str)) | |
| file_handler.setLevel(log_level) | |
| logger.addHandler(file_handler) | |
| initialized_logger[logger_name] = True | |
| return logger | |
| def get_env_info(): | |
| """Get environment information. | |
| Currently, only log the software version. | |
| """ | |
| import torch | |
| import torchvision | |
| from basicsr.version import __version__ | |
| msg = r""" | |
| ____ _ _____ ____ | |
| / __ ) ____ _ _____ (_)_____/ ___/ / __ \ | |
| / __ |/ __ `// ___// // ___/\__ \ / /_/ / | |
| / /_/ // /_/ /(__ )/ // /__ ___/ // _, _/ | |
| /_____/ \__,_//____//_/ \___//____//_/ |_| | |
| ______ __ __ __ __ | |
| / ____/____ ____ ____/ / / / __ __ _____ / /__ / / | |
| / / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / / | |
| / /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/ | |
| \____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_) | |
| """ | |
| msg += ('\nVersion Information: ' | |
| f'\n\tBasicSR: {__version__}' | |
| f'\n\tPyTorch: {torch.__version__}' | |
| f'\n\tTorchVision: {torchvision.__version__}') | |
| return msg | |