Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import warnings | |
| from functools import partial | |
| from typing import Dict, List, Optional, Union | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| from flax.core.frozen_dict import FrozenDict | |
| from flax.jax_utils import unreplicate | |
| from flax.training.common_utils import shard | |
| from PIL import Image | |
| from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel | |
| from ...models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel | |
| from ...schedulers import ( | |
| FlaxDDIMScheduler, | |
| FlaxDPMSolverMultistepScheduler, | |
| FlaxLMSDiscreteScheduler, | |
| FlaxPNDMScheduler, | |
| ) | |
| from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring | |
| from ..pipeline_flax_utils import FlaxDiffusionPipeline | |
| from ..stable_diffusion import FlaxStableDiffusionPipelineOutput | |
| from ..stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Set to True to use python for loop instead of jax.fori_loop for easier debugging | |
| DEBUG = False | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import jax | |
| >>> import numpy as np | |
| >>> import jax.numpy as jnp | |
| >>> from flax.jax_utils import replicate | |
| >>> from flax.training.common_utils import shard | |
| >>> from diffusers.utils import load_image, make_image_grid | |
| >>> from PIL import Image | |
| >>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel | |
| >>> def create_key(seed=0): | |
| ... return jax.random.PRNGKey(seed) | |
| >>> rng = create_key(0) | |
| >>> # get canny image | |
| >>> canny_image = load_image( | |
| ... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg" | |
| ... ) | |
| >>> prompts = "best quality, extremely detailed" | |
| >>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| >>> # load control net and stable diffusion v1-5 | |
| >>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| ... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32 | |
| ... ) | |
| >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 | |
| ... ) | |
| >>> params["controlnet"] = controlnet_params | |
| >>> num_samples = jax.device_count() | |
| >>> rng = jax.random.split(rng, jax.device_count()) | |
| >>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| >>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
| >>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) | |
| >>> p_params = replicate(params) | |
| >>> prompt_ids = shard(prompt_ids) | |
| >>> negative_prompt_ids = shard(negative_prompt_ids) | |
| >>> processed_image = shard(processed_image) | |
| >>> output = pipe( | |
| ... prompt_ids=prompt_ids, | |
| ... image=processed_image, | |
| ... params=p_params, | |
| ... prng_seed=rng, | |
| ... num_inference_steps=50, | |
| ... neg_prompt_ids=negative_prompt_ids, | |
| ... jit=True, | |
| ... ).images | |
| >>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
| >>> output_images = make_image_grid(output_images, num_samples // 4, 4) | |
| >>> output_images.save("generated_image.png") | |
| ``` | |
| """ | |
| class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline): | |
| r""" | |
| Flax-based pipeline for text-to-image generation using Stable Diffusion with ControlNet Guidance. | |
| This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`FlaxAutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.FlaxCLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`FlaxUNet2DConditionModel`]): | |
| A `FlaxUNet2DConditionModel` to denoise the encoded image latents. | |
| controlnet ([`FlaxControlNetModel`]: | |
| Provides additional conditioning to the `unet` during the denoising process. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or | |
| [`FlaxDPMSolverMultistepScheduler`]. | |
| safety_checker ([`FlaxStableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| def __init__( | |
| self, | |
| vae: FlaxAutoencoderKL, | |
| text_encoder: FlaxCLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: FlaxUNet2DConditionModel, | |
| controlnet: FlaxControlNetModel, | |
| scheduler: Union[ | |
| FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler | |
| ], | |
| safety_checker: FlaxStableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| dtype: jnp.dtype = jnp.float32, | |
| ): | |
| super().__init__() | |
| self.dtype = dtype | |
| if safety_checker is None: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def prepare_text_inputs(self, prompt: Union[str, List[str]]): | |
| if not isinstance(prompt, (str, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| text_input = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| return text_input.input_ids | |
| def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]): | |
| if not isinstance(image, (Image.Image, list)): | |
| raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") | |
| if isinstance(image, Image.Image): | |
| image = [image] | |
| processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) | |
| return processed_images | |
| def _get_has_nsfw_concepts(self, features, params): | |
| has_nsfw_concepts = self.safety_checker(features, params) | |
| return has_nsfw_concepts | |
| def _run_safety_checker(self, images, safety_model_params, jit=False): | |
| # safety_model_params should already be replicated when jit is True | |
| pil_images = [Image.fromarray(image) for image in images] | |
| features = self.feature_extractor(pil_images, return_tensors="np").pixel_values | |
| if jit: | |
| features = shard(features) | |
| has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) | |
| has_nsfw_concepts = unshard(has_nsfw_concepts) | |
| safety_model_params = unreplicate(safety_model_params) | |
| else: | |
| has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) | |
| images_was_copied = False | |
| for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): | |
| if has_nsfw_concept: | |
| if not images_was_copied: | |
| images_was_copied = True | |
| images = images.copy() | |
| images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image | |
| if any(has_nsfw_concepts): | |
| warnings.warn( | |
| "Potential NSFW content was detected in one or more images. A black image will be returned" | |
| " instead. Try again with a different prompt and/or seed." | |
| ) | |
| return images, has_nsfw_concepts | |
| def _generate( | |
| self, | |
| prompt_ids: jnp.ndarray, | |
| image: jnp.ndarray, | |
| params: Union[Dict, FrozenDict], | |
| prng_seed: jax.Array, | |
| num_inference_steps: int, | |
| guidance_scale: float, | |
| latents: Optional[jnp.ndarray] = None, | |
| neg_prompt_ids: Optional[jnp.ndarray] = None, | |
| controlnet_conditioning_scale: float = 1.0, | |
| ): | |
| height, width = image.shape[-2:] | |
| if height % 64 != 0 or width % 64 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.") | |
| # get prompt text embeddings | |
| prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] | |
| # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` | |
| # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` | |
| batch_size = prompt_ids.shape[0] | |
| max_length = prompt_ids.shape[-1] | |
| if neg_prompt_ids is None: | |
| uncond_input = self.tokenizer( | |
| [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" | |
| ).input_ids | |
| else: | |
| uncond_input = neg_prompt_ids | |
| negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] | |
| context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) | |
| image = jnp.concatenate([image] * 2) | |
| latents_shape = ( | |
| batch_size, | |
| self.unet.config.in_channels, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if latents is None: | |
| latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) | |
| else: | |
| if latents.shape != latents_shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
| def loop_body(step, args): | |
| latents, scheduler_state = args | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| latents_input = jnp.concatenate([latents] * 2) | |
| t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] | |
| timestep = jnp.broadcast_to(t, latents_input.shape[0]) | |
| latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) | |
| down_block_res_samples, mid_block_res_sample = self.controlnet.apply( | |
| {"params": params["controlnet"]}, | |
| jnp.array(latents_input), | |
| jnp.array(timestep, dtype=jnp.int32), | |
| encoder_hidden_states=context, | |
| controlnet_cond=image, | |
| conditioning_scale=controlnet_conditioning_scale, | |
| return_dict=False, | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet.apply( | |
| {"params": params["unet"]}, | |
| jnp.array(latents_input), | |
| jnp.array(timestep, dtype=jnp.int32), | |
| encoder_hidden_states=context, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| ).sample | |
| # perform guidance | |
| noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() | |
| return latents, scheduler_state | |
| scheduler_state = self.scheduler.set_timesteps( | |
| params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape | |
| ) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * params["scheduler"].init_noise_sigma | |
| if DEBUG: | |
| # run with python for loop | |
| for i in range(num_inference_steps): | |
| latents, scheduler_state = loop_body(i, (latents, scheduler_state)) | |
| else: | |
| latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) | |
| # scale and decode the image latents with vae | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample | |
| image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) | |
| return image | |
| def __call__( | |
| self, | |
| prompt_ids: jnp.ndarray, | |
| image: jnp.ndarray, | |
| params: Union[Dict, FrozenDict], | |
| prng_seed: jax.Array, | |
| num_inference_steps: int = 50, | |
| guidance_scale: Union[float, jnp.ndarray] = 7.5, | |
| latents: jnp.ndarray = None, | |
| neg_prompt_ids: jnp.ndarray = None, | |
| controlnet_conditioning_scale: Union[float, jnp.ndarray] = 1.0, | |
| return_dict: bool = True, | |
| jit: bool = False, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt_ids (`jnp.ndarray`): | |
| The prompt or prompts to guide the image generation. | |
| image (`jnp.ndarray`): | |
| Array representing the ControlNet input condition to provide guidance to the `unet` for generation. | |
| params (`Dict` or `FrozenDict`): | |
| Dictionary containing the model parameters/weights. | |
| prng_seed (`jax.Array`): | |
| Array containing random number generator key. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| latents (`jnp.ndarray`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| array is generated by sampling using the supplied random `generator`. | |
| controlnet_conditioning_scale (`float` or `jnp.ndarray`, *optional*, defaults to 1.0): | |
| The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
| to the residual in the original `unet`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of | |
| a plain tuple. | |
| jit (`bool`, defaults to `False`): | |
| Whether to run `pmap` versions of the generation and safety scoring functions. | |
| <Tip warning={true}> | |
| This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a | |
| future release. | |
| </Tip> | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is a list with the generated images | |
| and the second element is a list of `bool`s indicating whether the corresponding generated image | |
| contains "not-safe-for-work" (nsfw) content. | |
| """ | |
| height, width = image.shape[-2:] | |
| if isinstance(guidance_scale, float): | |
| # Convert to a tensor so each device gets a copy. Follow the prompt_ids for | |
| # shape information, as they may be sharded (when `jit` is `True`), or not. | |
| guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) | |
| if len(prompt_ids.shape) > 2: | |
| # Assume sharded | |
| guidance_scale = guidance_scale[:, None] | |
| if isinstance(controlnet_conditioning_scale, float): | |
| # Convert to a tensor so each device gets a copy. Follow the prompt_ids for | |
| # shape information, as they may be sharded (when `jit` is `True`), or not. | |
| controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0]) | |
| if len(prompt_ids.shape) > 2: | |
| # Assume sharded | |
| controlnet_conditioning_scale = controlnet_conditioning_scale[:, None] | |
| if jit: | |
| images = _p_generate( | |
| self, | |
| prompt_ids, | |
| image, | |
| params, | |
| prng_seed, | |
| num_inference_steps, | |
| guidance_scale, | |
| latents, | |
| neg_prompt_ids, | |
| controlnet_conditioning_scale, | |
| ) | |
| else: | |
| images = self._generate( | |
| prompt_ids, | |
| image, | |
| params, | |
| prng_seed, | |
| num_inference_steps, | |
| guidance_scale, | |
| latents, | |
| neg_prompt_ids, | |
| controlnet_conditioning_scale, | |
| ) | |
| if self.safety_checker is not None: | |
| safety_params = params["safety_checker"] | |
| images_uint8_casted = (images * 255).round().astype("uint8") | |
| num_devices, batch_size = images.shape[:2] | |
| images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) | |
| images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) | |
| images = np.array(images) | |
| # block images | |
| if any(has_nsfw_concept): | |
| for i, is_nsfw in enumerate(has_nsfw_concept): | |
| if is_nsfw: | |
| images[i] = np.asarray(images_uint8_casted[i]) | |
| images = images.reshape(num_devices, batch_size, height, width, 3) | |
| else: | |
| images = np.asarray(images) | |
| has_nsfw_concept = False | |
| if not return_dict: | |
| return (images, has_nsfw_concept) | |
| return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) | |
| # Static argnums are pipe, num_inference_steps. A change would trigger recompilation. | |
| # Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`). | |
| def _p_generate( | |
| pipe, | |
| prompt_ids, | |
| image, | |
| params, | |
| prng_seed, | |
| num_inference_steps, | |
| guidance_scale, | |
| latents, | |
| neg_prompt_ids, | |
| controlnet_conditioning_scale, | |
| ): | |
| return pipe._generate( | |
| prompt_ids, | |
| image, | |
| params, | |
| prng_seed, | |
| num_inference_steps, | |
| guidance_scale, | |
| latents, | |
| neg_prompt_ids, | |
| controlnet_conditioning_scale, | |
| ) | |
| def _p_get_has_nsfw_concepts(pipe, features, params): | |
| return pipe._get_has_nsfw_concepts(features, params) | |
| def unshard(x: jnp.ndarray): | |
| # einops.rearrange(x, 'd b ... -> (d b) ...') | |
| num_devices, batch_size = x.shape[:2] | |
| rest = x.shape[2:] | |
| return x.reshape(num_devices * batch_size, *rest) | |
| def preprocess(image, dtype): | |
| image = image.convert("RGB") | |
| w, h = image.size | |
| w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64 | |
| image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) | |
| image = jnp.array(image).astype(dtype) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| return image | |