Spaces:
Running
on
Zero
Running
on
Zero
| #Original code can be found on: https://github.com/black-forest-labs/flux | |
| from dataclasses import dataclass | |
| import torch | |
| from torch import Tensor, nn | |
| from einops import rearrange, repeat | |
| import comfy.patcher_extension | |
| import comfy.ldm.common_dit | |
| from comfy.ldm.flux.layers import ( | |
| EmbedND, | |
| timestep_embedding, | |
| ) | |
| from .layers import ( | |
| DoubleStreamBlock, | |
| LastLayer, | |
| SingleStreamBlock, | |
| Approximator, | |
| ChromaModulationOut, | |
| ) | |
| class ChromaParams: | |
| in_channels: int | |
| out_channels: int | |
| context_in_dim: int | |
| hidden_size: int | |
| mlp_ratio: float | |
| num_heads: int | |
| depth: int | |
| depth_single_blocks: int | |
| axes_dim: list | |
| theta: int | |
| patch_size: int | |
| qkv_bias: bool | |
| in_dim: int | |
| out_dim: int | |
| hidden_dim: int | |
| n_layers: int | |
| class Chroma(nn.Module): | |
| """ | |
| Transformer model for flow matching on sequences. | |
| """ | |
| def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): | |
| super().__init__() | |
| self.dtype = dtype | |
| params = ChromaParams(**kwargs) | |
| self.params = params | |
| self.patch_size = params.patch_size | |
| self.in_channels = params.in_channels | |
| self.out_channels = params.out_channels | |
| if params.hidden_size % params.num_heads != 0: | |
| raise ValueError( | |
| f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
| ) | |
| pe_dim = params.hidden_size // params.num_heads | |
| if sum(params.axes_dim) != pe_dim: | |
| raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
| self.hidden_size = params.hidden_size | |
| self.num_heads = params.num_heads | |
| self.in_dim = params.in_dim | |
| self.out_dim = params.out_dim | |
| self.hidden_dim = params.hidden_dim | |
| self.n_layers = params.n_layers | |
| self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
| self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) | |
| self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) | |
| # set as nn identity for now, will overwrite it later. | |
| self.distilled_guidance_layer = Approximator( | |
| in_dim=self.in_dim, | |
| hidden_dim=self.hidden_dim, | |
| out_dim=self.out_dim, | |
| n_layers=self.n_layers, | |
| dtype=dtype, device=device, operations=operations | |
| ) | |
| self.double_blocks = nn.ModuleList( | |
| [ | |
| DoubleStreamBlock( | |
| self.hidden_size, | |
| self.num_heads, | |
| mlp_ratio=params.mlp_ratio, | |
| qkv_bias=params.qkv_bias, | |
| dtype=dtype, device=device, operations=operations | |
| ) | |
| for _ in range(params.depth) | |
| ] | |
| ) | |
| self.single_blocks = nn.ModuleList( | |
| [ | |
| SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) | |
| for _ in range(params.depth_single_blocks) | |
| ] | |
| ) | |
| if final_layer: | |
| self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) | |
| self.skip_mmdit = [] | |
| self.skip_dit = [] | |
| self.lite = False | |
| def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0): | |
| # This function slices up the modulations tensor which has the following layout: | |
| # single : num_single_blocks * 3 elements | |
| # double_img : num_double_blocks * 6 elements | |
| # double_txt : num_double_blocks * 6 elements | |
| # final : 2 elements | |
| if block_type == "final": | |
| return (tensor[:, -2:-1, :], tensor[:, -1:, :]) | |
| single_block_count = self.params.depth_single_blocks | |
| double_block_count = self.params.depth | |
| offset = 3 * idx | |
| if block_type == "single": | |
| return ChromaModulationOut.from_offset(tensor, offset) | |
| # Double block modulations are 6 elements so we double 3 * idx. | |
| offset *= 2 | |
| if block_type in {"double_img", "double_txt"}: | |
| # Advance past the single block modulations. | |
| offset += 3 * single_block_count | |
| if block_type == "double_txt": | |
| # Advance past the double block img modulations. | |
| offset += 6 * double_block_count | |
| return ( | |
| ChromaModulationOut.from_offset(tensor, offset), | |
| ChromaModulationOut.from_offset(tensor, offset + 3), | |
| ) | |
| raise ValueError("Bad block_type") | |
| def forward_orig( | |
| self, | |
| img: Tensor, | |
| img_ids: Tensor, | |
| txt: Tensor, | |
| txt_ids: Tensor, | |
| timesteps: Tensor, | |
| guidance: Tensor = None, | |
| control = None, | |
| transformer_options={}, | |
| attn_mask: Tensor = None, | |
| ) -> Tensor: | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| # running on sequences img | |
| img = self.img_in(img) | |
| # distilled vector guidance | |
| mod_index_length = 344 | |
| distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype) | |
| # guidance = guidance * | |
| distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype) | |
| # get all modulation index | |
| modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype) | |
| # we need to broadcast the modulation index here so each batch has all of the index | |
| modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype) | |
| # and we need to broadcast timestep and guidance along too | |
| timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype) | |
| # then and only then we could concatenate it together | |
| input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype) | |
| mod_vectors = self.distilled_guidance_layer(input_vec) | |
| txt = self.txt_in(txt) | |
| ids = torch.cat((txt_ids, img_ids), dim=1) | |
| pe = self.pe_embedder(ids) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.double_blocks): | |
| if i not in self.skip_mmdit: | |
| double_mod = ( | |
| self.get_modulations(mod_vectors, "double_img", idx=i), | |
| self.get_modulations(mod_vectors, "double_txt", idx=i), | |
| ) | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"], out["txt"] = block(img=args["img"], | |
| txt=args["txt"], | |
| vec=args["vec"], | |
| pe=args["pe"], | |
| attn_mask=args.get("attn_mask"), | |
| transformer_options=args.get("transformer_options")) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": img, | |
| "txt": txt, | |
| "vec": double_mod, | |
| "pe": pe, | |
| "attn_mask": attn_mask, | |
| "transformer_options": transformer_options}, | |
| {"original_block": block_wrap}) | |
| txt = out["txt"] | |
| img = out["img"] | |
| else: | |
| img, txt = block(img=img, | |
| txt=txt, | |
| vec=double_mod, | |
| pe=pe, | |
| attn_mask=attn_mask, | |
| transformer_options=transformer_options) | |
| if control is not None: # Controlnet | |
| control_i = control.get("input") | |
| if i < len(control_i): | |
| add = control_i[i] | |
| if add is not None: | |
| img += add | |
| img = torch.cat((txt, img), 1) | |
| for i, block in enumerate(self.single_blocks): | |
| if i not in self.skip_dit: | |
| single_mod = self.get_modulations(mod_vectors, "single", idx=i) | |
| if ("single_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], | |
| vec=args["vec"], | |
| pe=args["pe"], | |
| attn_mask=args.get("attn_mask"), | |
| transformer_options=args.get("transformer_options")) | |
| return out | |
| out = blocks_replace[("single_block", i)]({"img": img, | |
| "vec": single_mod, | |
| "pe": pe, | |
| "attn_mask": attn_mask, | |
| "transformer_options": transformer_options}, | |
| {"original_block": block_wrap}) | |
| img = out["img"] | |
| else: | |
| img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options) | |
| if control is not None: # Controlnet | |
| control_o = control.get("output") | |
| if i < len(control_o): | |
| add = control_o[i] | |
| if add is not None: | |
| img[:, txt.shape[1] :, ...] += add | |
| img = img[:, txt.shape[1] :, ...] | |
| if hasattr(self, "final_layer"): | |
| final_mod = self.get_modulations(mod_vectors, "final") | |
| img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels) | |
| return img | |
| def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs): | |
| return comfy.patcher_extension.WrapperExecutor.new_class_executor( | |
| self._forward, | |
| self, | |
| comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) | |
| ).execute(x, timestep, context, guidance, control, transformer_options, **kwargs) | |
| def _forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs): | |
| bs, c, h, w = x.shape | |
| x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size)) | |
| img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size) | |
| if img.ndim != 3 or context.ndim != 3: | |
| raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
| h_len = ((h + (self.patch_size // 2)) // self.patch_size) | |
| w_len = ((w + (self.patch_size // 2)) // self.patch_size) | |
| img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) | |
| img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) | |
| img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
| txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) | |
| out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) | |
| return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h,:w] | |