Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import spaces | |
import subprocess, sys | |
# --------------------------------------------------------------------------------- | |
# 🛠️ Monkey-patch для gradio_client: игнорируем булевы схемы и не падаем на TypeError | |
# --------------------------------------------------------------------------------- | |
import gradio_client.utils as _gc_utils | |
# Сохраняем оригинальные функции | |
_orig_js2pt = _gc_utils._json_schema_to_python_type | |
_orig_get_type = _gc_utils.get_type | |
def _safe_json_schema_to_python_type(schema, defs=None): | |
""" | |
Если schema — bool (True/False), возвращаем 'Any', | |
иначе — вызываем оригинальный код. | |
""" | |
if isinstance(schema, bool): | |
return "Any" | |
return _orig_js2pt(schema, defs) | |
def _safe_get_type(schema): | |
""" | |
Если schema — bool, возвращаем 'Any', | |
иначе — вызываем оригинальную функцию get_type. | |
""" | |
if isinstance(schema, bool): | |
return "Any" | |
return _orig_get_type(schema) | |
# Заменяем в модуле | |
_gc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type | |
_gc_utils.get_type = _safe_get_type | |
# --------------------------------------------------------------------------------- | |
# Дальше уже можно безопасно импортировать Gradio | |
import gradio | |
import gradio_client | |
import gradio as gr | |
print("gradio version:", gradio.__version__) | |
print("gradio_client version:", gradio_client.__version__) | |
hf_hub_download(repo_id="ezioruan/inswapper_128.onnx", filename="inswapper_128.onnx", local_dir="models/insightface") | |
hf_hub_download(repo_id="martintomov/comfy", filename="facerestore_models/GPEN-BFR-512.onnx", local_dir="models/facerestore_models") | |
# hf_hub_download(repo_id="Gourieff/ReActor", filename="models/facerestore_models/GPEN-BFR-512.onnx", local_dir="models/facerestore_models") | |
hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection") | |
hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection") | |
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l") | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
"""Returns the value at the given index of a sequence or mapping. | |
If the object is a sequence (like list or string), returns the value at the given index. | |
If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
Some return a dictionary, in these cases, we look for the "results" key | |
Args: | |
obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
index (int): The index of the value to retrieve. | |
Returns: | |
Any: The value at the given index. | |
Raises: | |
IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
""" | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def find_path(name: str, path: str = None) -> str: | |
""" | |
Recursively looks at parent folders starting from the given path until it finds the given name. | |
Returns the path as a Path object if found, or None otherwise. | |
""" | |
# If no path is given, use the current working directory | |
if path is None: | |
path = os.getcwd() | |
# Check if the current directory contains the name | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
# Get the parent directory | |
parent_directory = os.path.dirname(path) | |
# If the parent directory is the same as the current directory, we've reached the root and stop the search | |
if parent_directory == path: | |
return None | |
# Recursively call the function with the parent directory | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
""" | |
Add 'ComfyUI' to the sys.path | |
""" | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
""" | |
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
""" | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
print( | |
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
) | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
This function sets up a new asyncio event loop, initializes the PromptServer, | |
creates a PromptQueue, and initializes the custom nodes. | |
""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
# Creating a new event loop and setting it as the default loop | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
# Creating an instance of PromptServer with the loop | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
# Initializing custom nodes | |
init_extra_nodes() | |
import_custom_nodes() | |
from nodes import NODE_CLASS_MAPPINGS | |
def generate_image(source_image, target_image, restore_strength, target_index): | |
with torch.inference_mode(): | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
loadimage_1 = loadimage.load_image(image=target_image) | |
loadimage_3 = loadimage.load_image(image=source_image) | |
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]() | |
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
reactorfaceswap_2 = reactorfaceswap.execute( | |
enabled=True, | |
swap_model="inswapper_128.onnx", | |
facedetection="retinaface_resnet50", | |
face_restore_model="GPEN-BFR-512.onnx", | |
face_restore_visibility=restore_strength, | |
codeformer_weight=0.5, | |
detect_gender_input="no", | |
detect_gender_source="no", | |
input_faces_index=str(target_index), # Преобразуем в строку | |
source_faces_index="0", | |
console_log_level=1, | |
input_image=get_value_at_index(loadimage_1, 0), | |
source_image=get_value_at_index(loadimage_3, 0), | |
) | |
saveimage_4 = saveimage.save_images( | |
filename_prefix="ComfyUI", | |
images=get_value_at_index(reactorfaceswap_2, 0), | |
) | |
saved_path = f"output/{saveimage_4['ui']['images'][0]['filename']}" | |
return saved_path | |
if __name__ == "__main__": | |
with gr.Blocks() as app: | |
# Add a title | |
gr.Markdown("# ComfyUI Reactor Fast Face Swap") | |
gr.Markdown("ComfyUI Reactor Fast Face Swap running directly on Gradio. - [How to convert your any ComfyUI workflow to Gradio](https://huggingface.co/blog/run-comfyui-workflows-on-spaces)") | |
with gr.Row(): | |
with gr.Column(): | |
# Add an input | |
# prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
# Add a `Row` to include the groups side by side | |
with gr.Row(): | |
# First group includes structure image and depth strength | |
with gr.Group(): | |
source_image = gr.Image(label="Source Image", type="filepath") | |
# depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength") | |
# Second group includes style image and style strength | |
with gr.Group(): | |
target_image = gr.Image(label="Target Image", type="filepath") | |
restore_strength = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Face Restore Strength") | |
target_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index") | |
gr.Markdown("Index_0 = Largest Face. To switch for another target face - switch to Index_1, e.t.c") | |
# The generate button | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
# The output image | |
output_image = gr.Image(label="Generated Image") | |
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs | |
# and the output an image | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[source_image, target_image, restore_strength, target_index], | |
outputs=[output_image] | |
) | |
app.launch(share=True) |