Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| from typing import Optional | |
| import torch | |
| import comfy.model_management | |
| from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose, factorization | |
| class OFTDiff(WeightAdapterTrainBase): | |
| def __init__(self, weights): | |
| super().__init__() | |
| # Unpack weights tuple from LoHaAdapter | |
| blocks, rescale, alpha, _ = weights | |
| # Create trainable parameters | |
| self.oft_blocks = torch.nn.Parameter(blocks) | |
| if rescale is not None: | |
| self.rescale = torch.nn.Parameter(rescale) | |
| self.rescaled = True | |
| else: | |
| self.rescaled = False | |
| self.block_num, self.block_size, _ = blocks.shape | |
| self.constraint = float(alpha) | |
| self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False) | |
| def __call__(self, w): | |
| org_dtype = w.dtype | |
| I = torch.eye(self.block_size, device=self.oft_blocks.device) | |
| ## generate r | |
| # for Q = -Q^T | |
| q = self.oft_blocks - self.oft_blocks.transpose(1, 2) | |
| normed_q = q | |
| if self.constraint: | |
| q_norm = torch.norm(q) + 1e-8 | |
| if q_norm > self.constraint: | |
| normed_q = q * self.constraint / q_norm | |
| # use float() to prevent unsupported type | |
| r = (I + normed_q) @ (I - normed_q).float().inverse() | |
| ## Apply chunked matmul on weight | |
| _, *shape = w.shape | |
| org_weight = w.to(dtype=r.dtype) | |
| org_weight = org_weight.unflatten(0, (self.block_num, self.block_size)) | |
| # Init R=0, so add I on it to ensure the output of step0 is original model output | |
| weight = torch.einsum( | |
| "k n m, k n ... -> k m ...", | |
| r, | |
| org_weight, | |
| ).flatten(0, 1) | |
| if self.rescaled: | |
| weight = self.rescale * weight | |
| return weight.to(org_dtype) | |
| def passive_memory_usage(self): | |
| """Calculates memory usage of the trainable parameters.""" | |
| return sum(param.numel() * param.element_size() for param in self.parameters()) | |
| class OFTAdapter(WeightAdapterBase): | |
| name = "oft" | |
| def __init__(self, loaded_keys, weights): | |
| self.loaded_keys = loaded_keys | |
| self.weights = weights | |
| def create_train(cls, weight, rank=1, alpha=1.0): | |
| out_dim = weight.shape[0] | |
| block_size, block_num = factorization(out_dim, rank) | |
| block = torch.zeros(block_num, block_size, block_size, device=weight.device, dtype=weight.dtype) | |
| return OFTDiff( | |
| (block, None, alpha, None) | |
| ) | |
| def to_train(self): | |
| return OFTDiff(self.weights) | |
| def load( | |
| cls, | |
| x: str, | |
| lora: dict[str, torch.Tensor], | |
| alpha: float, | |
| dora_scale: torch.Tensor, | |
| loaded_keys: set[str] = None, | |
| ) -> Optional["OFTAdapter"]: | |
| if loaded_keys is None: | |
| loaded_keys = set() | |
| blocks_name = "{}.oft_blocks".format(x) | |
| rescale_name = "{}.rescale".format(x) | |
| blocks = None | |
| if blocks_name in lora.keys(): | |
| blocks = lora[blocks_name] | |
| if blocks.ndim == 3: | |
| loaded_keys.add(blocks_name) | |
| else: | |
| blocks = None | |
| if blocks is None: | |
| return None | |
| rescale = None | |
| if rescale_name in lora.keys(): | |
| rescale = lora[rescale_name] | |
| loaded_keys.add(rescale_name) | |
| weights = (blocks, rescale, alpha, dora_scale) | |
| return cls(loaded_keys, weights) | |
| def calculate_weight( | |
| self, | |
| weight, | |
| key, | |
| strength, | |
| strength_model, | |
| offset, | |
| function, | |
| intermediate_dtype=torch.float32, | |
| original_weight=None, | |
| ): | |
| v = self.weights | |
| blocks = v[0] | |
| rescale = v[1] | |
| alpha = v[2] | |
| if alpha is None: | |
| alpha = 0 | |
| dora_scale = v[3] | |
| blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype) | |
| if rescale is not None: | |
| rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype) | |
| block_num, block_size, *_ = blocks.shape | |
| try: | |
| # Get r | |
| I = torch.eye(block_size, device=blocks.device, dtype=blocks.dtype) | |
| # for Q = -Q^T | |
| q = blocks - blocks.transpose(1, 2) | |
| normed_q = q | |
| if alpha > 0: # alpha in oft/boft is for constraint | |
| q_norm = torch.norm(q) + 1e-8 | |
| if q_norm > alpha: | |
| normed_q = q * alpha / q_norm | |
| # use float() to prevent unsupported type in .inverse() | |
| r = (I + normed_q) @ (I - normed_q).float().inverse() | |
| r = r.to(weight) | |
| _, *shape = weight.shape | |
| lora_diff = torch.einsum( | |
| "k n m, k n ... -> k m ...", | |
| (r * strength) - strength * I, | |
| weight.view(block_num, block_size, *shape), | |
| ).view(-1, *shape) | |
| if dora_scale is not None: | |
| weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
| else: | |
| weight += function((strength * lora_diff).type(weight.dtype)) | |
| except Exception as e: | |
| logging.error("ERROR {} {} {}".format(self.name, key, e)) | |
| return weight | |