Spaces:
Sleeping
Sleeping
Commit
Β·
3e5e5b9
0
Parent(s):
reinitialized commit
Browse files- .gitignore +4 -0
- README.md +162 -0
- app7.py +429 -0
- blog_evaluater_optimizer.py +98 -0
- code_peer_review_parallel.py +103 -0
- learning_path_orchestrator.py +141 -0
- orchestrator_data_flow.md +63 -0
- requirements.txt +17 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv/
|
| 2 |
+
leave/
|
| 3 |
+
.env
|
| 4 |
+
.DS_Store
|
README.md
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Blog Evaluator
|
| 2 |
+
|
| 3 |
+

|
| 4 |
+

|
| 5 |
+
|
| 6 |
+
# Blog Generation Workflow
|
| 7 |
+
|
| 8 |
+
## Overview
|
| 9 |
+
This project implements an **Evaluator-Optimizer Workflow** using **LangGraph** and **LangChain** to generate and refine short blogs. The workflow follows an iterative process where an LLM generates a blog, evaluates it against predefined criteria, and either accepts it or provides feedback for revision. This ensures that the final output meets quality standards.
|
| 10 |
+
|
| 11 |
+
## Why This Workflow Works
|
| 12 |
+
The **Evaluator-Optimizer Workflow** is effective because it automates content generation while maintaining **quality control** through an LLM-powered evaluation loop. If the initial blog meets the set criteria (**concise, engaging, structured with subtitles and a conclusion**), it is accepted. Otherwise, the LLM provides feedback, and the blog is regenerated with improvements.
|
| 13 |
+
|
| 14 |
+
## Features
|
| 15 |
+
- **Automated Blog Generation**: Generates a blog based on a given topic.
|
| 16 |
+
- **Evaluation & Feedback**: Reviews the blog for conciseness, structure, and entertainment value.
|
| 17 |
+
- **Iterative Refinement**: If the blog needs revision, feedback is provided, and a revised version is generated.
|
| 18 |
+
- **LangSmith Studio Integration**: Visualizes and tests workflow execution.
|
| 19 |
+
|
| 20 |
+
## Workflow Overview
|
| 21 |
+
```mermaid
|
| 22 |
+
graph TD;
|
| 23 |
+
A[Start] --> B[Generate Blog];
|
| 24 |
+
B --> C[Evaluate Blog];
|
| 25 |
+
C -->|Needs Revision| B;
|
| 26 |
+
C -->|Accepted| D[End];
|
| 27 |
+
```
|
| 28 |
+
- **Generates** an initial blog based on the provided topic.
|
| 29 |
+
- **Evaluates** the blog and determines if it meets quality standards.
|
| 30 |
+
- **Routing Decision**:
|
| 31 |
+
- If the blog is **good**, the workflow **ends**.
|
| 32 |
+
- If the blog **needs revision**, feedback is given, and a new version is generated.
|
| 33 |
+
|
| 34 |
+
## Setup & Usage
|
| 35 |
+
|
| 36 |
+
### Install dependencies:
|
| 37 |
+
```bash
|
| 38 |
+
pip install langchain_groq langgraph pydantic python-dotenv
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Set environment variables in a `.env` file:
|
| 42 |
+
```env
|
| 43 |
+
GROQ_API_KEY=your_api_key
|
| 44 |
+
LANGCHAIN_API_KEY=your_langchain_api_key
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Run the script in an IDE or Jupyter Notebook:
|
| 48 |
+
```python
|
| 49 |
+
state = optimizer_workflow.invoke({"topic": "MCP from Anthropic"})
|
| 50 |
+
print(state["blog"])
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## Testing in LangSmith Studio
|
| 54 |
+
- Deploy the workflow and **provide only the topic** as input.
|
| 55 |
+
- Monitor execution flow and **validate outputs** by logging into your LangSmith account (Adding @traceable to your function helps track it)
|
| 56 |
+
- You can also test via Langraph dev (ensure you have the langgraph.json file for this)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Parallelized Code Review with LLMs
|
| 60 |
+

|
| 61 |
+
|
| 62 |
+
## Introduction
|
| 63 |
+
This project demonstrates a **parallelized workflow** for **automated code review** using **large language models (LLMs)**. Instead of running feedback checks sequentially, the system executes multiple review processes **in parallel**, making it an **efficient and scalable** solution for code assessment.
|
| 64 |
+
|
| 65 |
+
### Why Parallelization?
|
| 66 |
+
- **Faster Execution:** Multiple feedback checks run **simultaneously**, reducing the overall processing time.
|
| 67 |
+
- **Improved Scalability:** New review criteria can be added without significant slowdowns.
|
| 68 |
+
- **Better Resource Utilization:** Leverages LLM calls efficiently by distributing tasks.
|
| 69 |
+
|
| 70 |
+
## Features
|
| 71 |
+
- **Readability Analysis**: Evaluates the clarity and structure of the code.
|
| 72 |
+
- **Security Review**: Identifies potential vulnerabilities.
|
| 73 |
+
- **Best Practices Compliance**: Checks adherence to industry-standard coding best practices.
|
| 74 |
+
- **Feedback Aggregation**: Combines results into a single, structured response.
|
| 75 |
+
|
| 76 |
+
## How It Works
|
| 77 |
+
1. A **code snippet** is provided as input.
|
| 78 |
+
2. Three independent LLM processes analyze the snippet for:
|
| 79 |
+
- Readability
|
| 80 |
+
- Security vulnerabilities
|
| 81 |
+
- Best practices adherence
|
| 82 |
+
3. The results from these processes are aggregated into a final feedback report.
|
| 83 |
+
|
| 84 |
+
## Technologies Used
|
| 85 |
+
- **Python**
|
| 86 |
+
- **LangChain** (LLM-based workflow automation)
|
| 87 |
+
- **LangGraph** (Parallel execution of LLM tasks)
|
| 88 |
+
- **Groq API** (LLM inference)
|
| 89 |
+
- **Pydantic & TypedDict** (Data validation)
|
| 90 |
+
- **Dotenv & OS** (Environment variable management)
|
| 91 |
+
|
| 92 |
+
## Running the Code
|
| 93 |
+
1. Clone this repository:
|
| 94 |
+
|
| 95 |
+
2. Install dependencies:
|
| 96 |
+
```sh
|
| 97 |
+
pip install -r requirements.txt
|
| 98 |
+
```
|
| 99 |
+
3. Set up your environment variables in .env file
|
| 100 |
+
|
| 101 |
+
4. Run the script
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
## Testing in LangSmith Studio
|
| 105 |
+
- Deploy the workflow and **provide only the topic** as input.
|
| 106 |
+
- Monitor execution flow and **validate outputs** by logging into your LangSmith account (Adding @traceable to your function helps track it)
|
| 107 |
+
- You can also test via Langraph dev (ensure you have the langgraph.json file for this)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# Learning Path Generator
|
| 111 |
+

|
| 112 |
+

|
| 113 |
+
|
| 114 |
+
## Overview
|
| 115 |
+
This project implements an **Orchestrator-Synthesizer** workflow to dynamically generate a personalized **learning roadmap** based on a user's existing skills and learning goals. It uses **LangChain, LangGraph, and Groq AI models** to generate structured study plans and topic summaries.
|
| 116 |
+
|
| 117 |
+
## Why Orchestrator-Synthesizer?
|
| 118 |
+
The **Orchestrator-Synthesizer** pattern is ideal for structured content generation workflows where tasks need to be dynamically assigned, processed independently, and then combined into a final output. It differs from traditional parallelization in the following ways:
|
| 119 |
+
- **Orchestration** dynamically determines what needs to be processed, ensuring relevant tasks are executed based on user input.
|
| 120 |
+
- **Workers** independently generate content summaries for each topic in the study plan.
|
| 121 |
+
- **Synthesis** intelligently merges topic summaries into a well-structured learning roadmap.
|
| 122 |
+
|
| 123 |
+
This ensures a **scalable, modular, and adaptable** approach to content generation, avoiding unnecessary processing while keeping results contextual.
|
| 124 |
+
|
| 125 |
+
## Workflow Breakdown
|
| 126 |
+
The workflow consists of three key components:
|
| 127 |
+
|
| 128 |
+
### 1οΈβ£ Orchestrator
|
| 129 |
+
- Creates a **study plan** based on the user's **skills and learning goals**.
|
| 130 |
+
- Uses an LLM with a structured output schema to generate a list of **learning topics**.
|
| 131 |
+
|
| 132 |
+
### 2οΈβ£ Workers
|
| 133 |
+
- Each **worker** processes an individual **learning topic**.
|
| 134 |
+
- Generates a **markdown-formatted content summary** for the topic, including key concepts and learning resources.
|
| 135 |
+
|
| 136 |
+
### 3οΈβ£ Synthesizer
|
| 137 |
+
- Collects all **topic summaries** and organizes them into a **cohesive learning roadmap**.
|
| 138 |
+
- Ensures smooth flow and structured representation of the learning journey.
|
| 139 |
+
|
| 140 |
+
## Code Structure
|
| 141 |
+
- `orchestrator(state: State)`: Generates the study plan dynamically.
|
| 142 |
+
- `llm_call(state: WorkerState)`: Summarizes a single topic.
|
| 143 |
+
- `synthesizer(state: State)`: Merges all topic summaries into the final roadmap.
|
| 144 |
+
- `assign_workers(state: State)`: Dynamically assigns tasks based on generated topics.
|
| 145 |
+
|
| 146 |
+
## Running the Workflow
|
| 147 |
+
To generate a personalized learning path, the workflow takes the following inputs:
|
| 148 |
+
|
| 149 |
+
```python
|
| 150 |
+
user_skills = "Python programming, basic machine learning concepts"
|
| 151 |
+
user_goals = "Learn advanced AI, master prompt engineering, and build AI applications"
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
It then executes the **Orchestrator β Workers β Synthesizer** pipeline, producing a structured learning roadmap.
|
| 155 |
+
|
| 156 |
+
## Future Enhancements
|
| 157 |
+
- **Incorporate user feedback loops** to refine study plans over time.
|
| 158 |
+
- **Add multimodal learning resources** (e.g., videos, interactive exercises).
|
| 159 |
+
- **Expand to different learning domains** beyond AI and machine learning.
|
| 160 |
+
---
|
| 161 |
+
|
| 162 |
+
|
app7.py
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from typing import Literal, List, Dict, TypedDict, Annotated
|
| 4 |
+
from langchain_groq import ChatGroq
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from langsmith import traceable
|
| 7 |
+
from langgraph.graph import StateGraph, START, END
|
| 8 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 9 |
+
from langgraph.constants import Send
|
| 10 |
+
import operator
|
| 11 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# --- Helper Functions ---
|
| 17 |
+
|
| 18 |
+
def markdown_converter(text):
|
| 19 |
+
return st.markdown(text)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# --- Blog Evaluator Workflow ---
|
| 23 |
+
|
| 24 |
+
class BlogState(TypedDict):
|
| 25 |
+
topic: str
|
| 26 |
+
blog: str
|
| 27 |
+
evaluation: str
|
| 28 |
+
feedback: str
|
| 29 |
+
accepted: bool
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def generate_blog(state: BlogState, llm):
|
| 33 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 34 |
+
("system", "You are a helpful assistant that generates short blogs."),
|
| 35 |
+
("human", "Generate a short blog about: {topic}")
|
| 36 |
+
])
|
| 37 |
+
chain = prompt | llm
|
| 38 |
+
result = chain.invoke({"topic": state["topic"]}).content
|
| 39 |
+
return {"blog": result}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def evaluate_blog(state: BlogState, llm):
|
| 43 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 44 |
+
("system", "You are a strict blog evaluator."),
|
| 45 |
+
("human",
|
| 46 |
+
"Evaluate this blog:\n{blog}\nIs it concise, engaging, structured with subtitles and a conclusion? Respond with 'yes' or 'no'."),
|
| 47 |
+
("human", "If the answer is no. provide specific feedback on the needed improvements")
|
| 48 |
+
])
|
| 49 |
+
chain = prompt | llm
|
| 50 |
+
result = chain.invoke({"blog": state["blog"]}).content
|
| 51 |
+
|
| 52 |
+
lines = result.split('\n')
|
| 53 |
+
evaluation_text = lines[0].strip().lower()
|
| 54 |
+
if 'no' in evaluation_text:
|
| 55 |
+
return {"evaluation": "Needs Revision", "feedback": "\n".join(lines[1:]), "accepted": False}
|
| 56 |
+
else:
|
| 57 |
+
return {"evaluation": "Accepted", "feedback": "", "accepted": True}
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def provide_feedback(state: BlogState):
|
| 61 |
+
return {"feedback": state["feedback"]}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def conditional_check(state):
|
| 65 |
+
if not state["accepted"]:
|
| 66 |
+
return "revise"
|
| 67 |
+
else:
|
| 68 |
+
return "end"
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def build_blog_graph(llm):
|
| 72 |
+
def generate_blog_llm(state):
|
| 73 |
+
return generate_blog(state, llm)
|
| 74 |
+
|
| 75 |
+
def evaluate_blog_llm(state):
|
| 76 |
+
return evaluate_blog(state, llm)
|
| 77 |
+
|
| 78 |
+
graph = StateGraph(BlogState)
|
| 79 |
+
graph.add_node("generate_blog", generate_blog_llm)
|
| 80 |
+
graph.add_node("evaluate_blog", evaluate_blog_llm)
|
| 81 |
+
graph.add_node("provide_feedback", provide_feedback)
|
| 82 |
+
graph.set_entry_point("generate_blog")
|
| 83 |
+
graph.add_conditional_edges(
|
| 84 |
+
"evaluate_blog",
|
| 85 |
+
conditional_check,
|
| 86 |
+
{
|
| 87 |
+
"revise": "generate_blog",
|
| 88 |
+
"end": END
|
| 89 |
+
}
|
| 90 |
+
)
|
| 91 |
+
graph.add_edge("generate_blog", "evaluate_blog")
|
| 92 |
+
graph.add_edge("provide_feedback", "generate_blog")
|
| 93 |
+
|
| 94 |
+
return graph
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# --- Parallelized Code Review Workflow ---
|
| 98 |
+
|
| 99 |
+
class CodeReviewState(TypedDict):
|
| 100 |
+
code_snippet: str
|
| 101 |
+
readability_feedback: str
|
| 102 |
+
security_feedback: str
|
| 103 |
+
best_practices_feedback: str
|
| 104 |
+
feedback_aggregator: str
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@traceable
|
| 108 |
+
def get_readability_feedback(state: CodeReviewState, llm):
|
| 109 |
+
"""First LLM call to check code readability"""
|
| 110 |
+
st.session_state.progress_text = "Analyzing Readability..."
|
| 111 |
+
msg = llm.invoke([
|
| 112 |
+
HumanMessage(content=f"Provide readability feedback for the following code:\n\n {state['code_snippet']}")
|
| 113 |
+
])
|
| 114 |
+
return {"readability_feedback": msg.content}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@traceable
|
| 118 |
+
def get_security_feedback(state: CodeReviewState, llm):
|
| 119 |
+
"""Second LLM call to check for security vulnerabilities in code"""
|
| 120 |
+
st.session_state.progress_text = "Analyzing Security..."
|
| 121 |
+
msg = llm.invoke([
|
| 122 |
+
HumanMessage(
|
| 123 |
+
content=f"Check for potential security vulnerabilities in the following code and provide feedback:\n\n {state['code_snippet']}")
|
| 124 |
+
])
|
| 125 |
+
return {"security_feedback": msg.content}
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@traceable
|
| 129 |
+
def get_best_practices_feedback(state: CodeReviewState, llm):
|
| 130 |
+
"""Third LLM call to check for adherence to coding best practices"""
|
| 131 |
+
st.session_state.progress_text = "Analyzing Best Practices..."
|
| 132 |
+
msg = llm.invoke([
|
| 133 |
+
HumanMessage(
|
| 134 |
+
content=f"Evaluate the adherence to coding best practices in the following code and provide feedback:\n\n {state['code_snippet']}")
|
| 135 |
+
])
|
| 136 |
+
return {"best_practices_feedback": msg.content}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@traceable
|
| 140 |
+
def aggregate_feedback(state: CodeReviewState):
|
| 141 |
+
"""Combine all the feedback from the three LLM calls into a single output"""
|
| 142 |
+
st.session_state.progress_text = "Aggregating Feedback..."
|
| 143 |
+
combined = f"Here's the overall feedback for the code:\n\n"
|
| 144 |
+
combined += f"READABILITY FEEDBACK:\n{state['readability_feedback']}\n\n"
|
| 145 |
+
combined += f"SECURITY FEEDBACK:\n{state['security_feedback']}\n\n"
|
| 146 |
+
combined += f"BEST PRACTICES FEEDBACK:\n{state['best_practices_feedback']}"
|
| 147 |
+
return {"feedback_aggregator": combined}
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def build_code_review_graph(llm):
|
| 151 |
+
def get_readability_feedback_llm(state):
|
| 152 |
+
return get_readability_feedback(state, llm)
|
| 153 |
+
|
| 154 |
+
def get_security_feedback_llm(state):
|
| 155 |
+
return get_security_feedback(state, llm)
|
| 156 |
+
|
| 157 |
+
def get_best_practices_feedback_llm(state):
|
| 158 |
+
return get_best_practices_feedback(state, llm)
|
| 159 |
+
|
| 160 |
+
parallel_builder = StateGraph(CodeReviewState)
|
| 161 |
+
|
| 162 |
+
# Add nodes
|
| 163 |
+
parallel_builder.add_node("get_readability_feedback", get_readability_feedback_llm)
|
| 164 |
+
parallel_builder.add_node("get_security_feedback", get_security_feedback_llm)
|
| 165 |
+
parallel_builder.add_node("get_best_practices_feedback", get_best_practices_feedback_llm)
|
| 166 |
+
parallel_builder.add_node("aggregate_feedback", aggregate_feedback)
|
| 167 |
+
|
| 168 |
+
# Add edges
|
| 169 |
+
parallel_builder.add_edge(START, "get_readability_feedback")
|
| 170 |
+
parallel_builder.add_edge(START, "get_security_feedback")
|
| 171 |
+
parallel_builder.add_edge(START, "get_best_practices_feedback")
|
| 172 |
+
parallel_builder.add_edge("get_readability_feedback", "aggregate_feedback")
|
| 173 |
+
parallel_builder.add_edge("get_security_feedback", "aggregate_feedback")
|
| 174 |
+
parallel_builder.add_edge("get_best_practices_feedback", "aggregate_feedback")
|
| 175 |
+
parallel_builder.add_edge("aggregate_feedback", END)
|
| 176 |
+
|
| 177 |
+
return parallel_builder.compile()
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# --- Learning Path Generator Workflow ---
|
| 181 |
+
|
| 182 |
+
class Topic(BaseModel):
|
| 183 |
+
name: str = Field(description="Name of the learning topic.")
|
| 184 |
+
description: str = Field(description="Brief overview of the topic.")
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class Topics(BaseModel):
|
| 188 |
+
topics: List[Topic] = Field(description="List of topics to learn.")
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class State(TypedDict):
|
| 192 |
+
user_skills: str
|
| 193 |
+
user_goals: str
|
| 194 |
+
topics: List[Topic]
|
| 195 |
+
completed_topics: Annotated[List[str], operator.add]
|
| 196 |
+
learning_roadmap: str
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class WorkerState(TypedDict):
|
| 200 |
+
topic: Topic
|
| 201 |
+
completed_topics: List[str]
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
@traceable
|
| 205 |
+
def orchestrator(state: State, planner):
|
| 206 |
+
study_plan = planner.invoke([
|
| 207 |
+
SystemMessage(
|
| 208 |
+
content="Create a detailed study plan based on user skills and goals."
|
| 209 |
+
),
|
| 210 |
+
HumanMessage(
|
| 211 |
+
content=f"User skills: {state['user_skills']}\nUser goals: {state['user_goals']}"
|
| 212 |
+
),
|
| 213 |
+
])
|
| 214 |
+
return {"topics": study_plan.topics}
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@traceable
|
| 218 |
+
def llm_call(state: WorkerState, llm):
|
| 219 |
+
topic_summary = llm.invoke([
|
| 220 |
+
SystemMessage(
|
| 221 |
+
content="Generate a content summary for the provided topic."
|
| 222 |
+
),
|
| 223 |
+
HumanMessage(
|
| 224 |
+
content=f"Topic: {state['topic'].name}\nDescription: {state['topic'].description}"
|
| 225 |
+
),
|
| 226 |
+
])
|
| 227 |
+
|
| 228 |
+
return {"completed_topics": [topic_summary.content]}
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
@traceable
|
| 232 |
+
def synthesizer(state: State):
|
| 233 |
+
topic_summaries = state["completed_topics"]
|
| 234 |
+
learning_roadmap = "\n\n---\n\n".join(topic_summaries)
|
| 235 |
+
return {"learning_roadmap": learning_roadmap}
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def assign_workers(state: State):
|
| 239 |
+
return [Send("llm_call", {"topic": t}) for t in state["topics"]]
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def build_learning_path_graph(llm, planner):
|
| 243 |
+
def orchestrator_planner(state):
|
| 244 |
+
return orchestrator(state, planner)
|
| 245 |
+
|
| 246 |
+
def llm_call_llm(state):
|
| 247 |
+
return llm_call(state, llm)
|
| 248 |
+
|
| 249 |
+
learning_path_builder = StateGraph(State)
|
| 250 |
+
|
| 251 |
+
learning_path_builder.add_node("orchestrator", orchestrator_planner)
|
| 252 |
+
learning_path_builder.add_node("llm_call", llm_call_llm)
|
| 253 |
+
learning_path_builder.add_node("synthesizer", synthesizer)
|
| 254 |
+
|
| 255 |
+
learning_path_builder.set_entry_point("orchestrator")
|
| 256 |
+
learning_path_builder.add_conditional_edges("orchestrator", assign_workers, {"llm_call": "llm_call"})
|
| 257 |
+
learning_path_builder.add_edge("llm_call", "synthesizer")
|
| 258 |
+
learning_path_builder.add_edge("synthesizer", END)
|
| 259 |
+
|
| 260 |
+
return learning_path_builder
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
# --- Streamlit App ---
|
| 264 |
+
|
| 265 |
+
st.set_page_config(page_title="LLM-Powered Workflows", layout="wide")
|
| 266 |
+
|
| 267 |
+
# Custom CSS for colors
|
| 268 |
+
st.markdown(
|
| 269 |
+
"""
|
| 270 |
+
<style>
|
| 271 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
|
| 272 |
+
background-color: #FF7F50; /* Coral */
|
| 273 |
+
}
|
| 274 |
+
[data-testid="stAppViewContainer"] {
|
| 275 |
+
background-color: #FF1493; /* Deep Pink */
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
/* Adjusting main content text color */
|
| 279 |
+
.block-container {
|
| 280 |
+
color: #9400D3; /* Dark Violet */
|
| 281 |
+
}
|
| 282 |
+
/* for all text */
|
| 283 |
+
body {
|
| 284 |
+
color: #9400D3 !important; /* Dark Violet */
|
| 285 |
+
}
|
| 286 |
+
|
| 287 |
+
</style>
|
| 288 |
+
""",
|
| 289 |
+
unsafe_allow_html=True,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
st.title("Try out LLM-Powered Workflows")
|
| 294 |
+
st.markdown("""
|
| 295 |
+
<p style='color:#9400D3; font-size: 20px;'>
|
| 296 |
+
<b>1. Learning Path Generator</b> - Orchestrator-Synthesizer Workflow<br>
|
| 297 |
+
<b>2. Peer Code Review</b> - Parallelized Workflow<br>
|
| 298 |
+
<b>3. Blog Generation</b> - Evaluator-Optimizer Workflow
|
| 299 |
+
</p>
|
| 300 |
+
<p style='color:#9400D3;'><b>Enter your GROQ API key on the left to get started!</b></p>
|
| 301 |
+
""", unsafe_allow_html=True)
|
| 302 |
+
|
| 303 |
+
# Initialize session state
|
| 304 |
+
if "model_choice" not in st.session_state:
|
| 305 |
+
st.session_state.model_choice = "mixtral-8x7b-32768"
|
| 306 |
+
if "progress_text" not in st.session_state:
|
| 307 |
+
st.session_state.progress_text = ""
|
| 308 |
+
if "api_key_submitted" not in st.session_state:
|
| 309 |
+
st.session_state.api_key_submitted = False
|
| 310 |
+
# Sidebar for API key, model selection, and workflow selection
|
| 311 |
+
with st.sidebar:
|
| 312 |
+
st.header("Configuration")
|
| 313 |
+
groq_api_key_input = st.text_input("Enter your Groq API Key:", type="password", key="api_key_input")
|
| 314 |
+
api_key_submitted = st.button("Submit API Key")
|
| 315 |
+
|
| 316 |
+
available_models = ["mixtral-8x7b-32768", "deepseek-r1-distill-qwen-32b", "qwen-2.5-32b", "llama-3.1-8b-instant"]
|
| 317 |
+
|
| 318 |
+
llm = None
|
| 319 |
+
planner = None
|
| 320 |
+
|
| 321 |
+
if api_key_submitted:
|
| 322 |
+
st.session_state.api_key_submitted = True
|
| 323 |
+
|
| 324 |
+
if st.session_state.api_key_submitted:
|
| 325 |
+
if groq_api_key_input:
|
| 326 |
+
os.environ["GROQ_API_KEY"] = groq_api_key_input
|
| 327 |
+
elif os.environ.get("GROQ_API_KEY"):
|
| 328 |
+
groq_api_key_input = os.environ.get("GROQ_API_KEY")
|
| 329 |
+
|
| 330 |
+
if groq_api_key_input or os.environ.get("GROQ_API_KEY"):
|
| 331 |
+
try:
|
| 332 |
+
llm = ChatGroq(groq_api_key=groq_api_key_input, model_name=st.session_state.model_choice)
|
| 333 |
+
planner = llm.with_structured_output(Topics)
|
| 334 |
+
st.success(f"API key loaded successfully!")
|
| 335 |
+
|
| 336 |
+
st.session_state.model_choice = st.selectbox(
|
| 337 |
+
"Choose a Model",
|
| 338 |
+
available_models,
|
| 339 |
+
key="model_select_box",
|
| 340 |
+
index=available_models.index(st.session_state.model_choice) if st.session_state.model_choice in available_models else 0
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
llm = ChatGroq(groq_api_key=groq_api_key_input, model_name=st.session_state.model_choice)
|
| 344 |
+
planner = llm.with_structured_output(Topics)
|
| 345 |
+
|
| 346 |
+
st.success(f"model '{st.session_state.model_choice}' loaded successfully!")
|
| 347 |
+
|
| 348 |
+
except Exception as e:
|
| 349 |
+
st.error(f"Error initializing LLM: {e}")
|
| 350 |
+
llm = None
|
| 351 |
+
planner = None
|
| 352 |
+
else:
|
| 353 |
+
st.warning("Please enter your Groq API key to continue.")
|
| 354 |
+
|
| 355 |
+
if llm is not None:
|
| 356 |
+
# Emojis for workflow choices
|
| 357 |
+
workflow_emojis = {
|
| 358 |
+
"Learning Path Generator": "π Learning Path", # Books
|
| 359 |
+
"Parallelized Code Review": "π¨βπ» Code Review", # Man technologist
|
| 360 |
+
"Blog Evaluator": "π Blog Evaluator", # Writing hand
|
| 361 |
+
}
|
| 362 |
+
|
| 363 |
+
# Correct order for selectbox:
|
| 364 |
+
workflow_order = ["Learning Path Generator", "Parallelized Code Review", "Blog Evaluator"]
|
| 365 |
+
|
| 366 |
+
workflow_choice = st.selectbox(
|
| 367 |
+
"Choose a Workflow",
|
| 368 |
+
workflow_order,
|
| 369 |
+
format_func=lambda x: f"{workflow_emojis[x]}",
|
| 370 |
+
key="workflow_choice"
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
# Main content area
|
| 374 |
+
if llm and planner:
|
| 375 |
+
# Emojis for workflow choices
|
| 376 |
+
workflow_emojis = {
|
| 377 |
+
"Learning Path Generator": "π", # Books
|
| 378 |
+
"Parallelized Code Review": "π¨βπ»", # Man technologist
|
| 379 |
+
"Blog Evaluator": "π", # Writing hand
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
if st.session_state.get("workflow_choice") == "Learning Path Generator":
|
| 383 |
+
st.header(f"{workflow_emojis['Learning Path Generator']} Learning Path Generator")
|
| 384 |
+
user_skills = st.text_area("Enter your current skills:")
|
| 385 |
+
user_goals = st.text_area("Enter your learning goals:")
|
| 386 |
+
if st.button("Generate Learning Path"):
|
| 387 |
+
if user_skills and user_goals:
|
| 388 |
+
learning_graph = build_learning_path_graph(llm, planner)
|
| 389 |
+
learning_app = learning_graph.compile()
|
| 390 |
+
result = learning_app.invoke({"user_skills": user_skills, "user_goals": user_goals})
|
| 391 |
+
st.subheader("Learning Roadmap:")
|
| 392 |
+
markdown_converter(result["learning_roadmap"])
|
| 393 |
+
else:
|
| 394 |
+
st.error("Please enter both your skills and goals")
|
| 395 |
+
|
| 396 |
+
elif st.session_state.get("workflow_choice") == "Parallelized Code Review":
|
| 397 |
+
st.header(f"{workflow_emojis['Parallelized Code Review']} Parallelized Code Review")
|
| 398 |
+
code_snippet = st.text_area("Enter code snippet:", height=300)
|
| 399 |
+
review_button = st.button("Review Code")
|
| 400 |
+
|
| 401 |
+
if review_button:
|
| 402 |
+
if code_snippet:
|
| 403 |
+
workflow = build_code_review_graph(llm)
|
| 404 |
+
progress_bar = st.progress(0)
|
| 405 |
+
progress_bar.progress(25, text="Starting...")
|
| 406 |
+
result = workflow.invoke({"code_snippet": code_snippet})
|
| 407 |
+
progress_bar.progress(100, text="Done!")
|
| 408 |
+
st.subheader("Code Review Feedback:")
|
| 409 |
+
st.markdown(result["feedback_aggregator"])
|
| 410 |
+
progress_bar.empty()
|
| 411 |
+
st.session_state.progress_text = ""
|
| 412 |
+
else:
|
| 413 |
+
st.error("Please enter a code snippet to review.")
|
| 414 |
+
else:
|
| 415 |
+
st.write(st.session_state.progress_text)
|
| 416 |
+
|
| 417 |
+
elif st.session_state.get("workflow_choice") == "Blog Evaluator":
|
| 418 |
+
st.header(f"{workflow_emojis['Blog Evaluator']} Blog Evaluator")
|
| 419 |
+
blog_topic = st.text_input("Enter blog topic:")
|
| 420 |
+
if st.button("Generate and Evaluate"):
|
| 421 |
+
if blog_topic:
|
| 422 |
+
blog_graph = build_blog_graph(llm)
|
| 423 |
+
blog_app = blog_graph.compile()
|
| 424 |
+
result = blog_app.invoke({"topic": blog_topic})
|
| 425 |
+
st.subheader("Blog:")
|
| 426 |
+
markdown_converter(result["blog"])
|
| 427 |
+
#only display blog content. No Evaluation or feedback.
|
| 428 |
+
else:
|
| 429 |
+
st.error("Please enter a blog topic")
|
blog_evaluater_optimizer.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from typing import Literal, List, Dict, TypedDict
|
| 4 |
+
from langchain_groq import ChatGroq
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from langsmith import traceable
|
| 7 |
+
from langgraph.graph import StateGraph, START, END
|
| 8 |
+
from IPython.display import Image, display
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 13 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 14 |
+
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
| 15 |
+
|
| 16 |
+
llm = ChatGroq(model="qwen-2.5-32b")
|
| 17 |
+
|
| 18 |
+
# Graph state
|
| 19 |
+
class State(TypedDict):
|
| 20 |
+
blog: str
|
| 21 |
+
topic: str
|
| 22 |
+
feedback: str
|
| 23 |
+
good_or_revise: str
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class Feedback(BaseModel):
|
| 27 |
+
grade: Literal["good", "needs revision"] = Field(
|
| 28 |
+
description="Decide if the blog is entertaining, concise with maxiumum of 400 characters, with subtitles and a conclusion or needs revision.",
|
| 29 |
+
)
|
| 30 |
+
feedback: str = Field(
|
| 31 |
+
description="If the blog is not good, provide feedback on how to improve it.",
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
evaluator = llm.with_structured_output(Feedback)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Nodes
|
| 39 |
+
@traceable
|
| 40 |
+
def llm_call_generator(state: State):
|
| 41 |
+
"""LLM generates a blog"""
|
| 42 |
+
if state.get("feedback"):
|
| 43 |
+
msg = llm.invoke(
|
| 44 |
+
f"Write a blog about {state['topic']} but take into account the feedback: {state['feedback']}"
|
| 45 |
+
)
|
| 46 |
+
else:
|
| 47 |
+
msg = llm.invoke(f"Write a blog about {state['topic']}")
|
| 48 |
+
|
| 49 |
+
# Debugging print statement
|
| 50 |
+
print("Generated blog content:", msg.content)
|
| 51 |
+
|
| 52 |
+
return {"blog": msg.content} # Ensure this key is returned!
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@traceable
|
| 56 |
+
def llm_call_evaluator(state: State):
|
| 57 |
+
"""LLM evaluates the blog"""
|
| 58 |
+
grade = evaluator.invoke(f"Grade the blog {state['blog']}")
|
| 59 |
+
return {"good_or_revise": grade.grade, "feedback": grade.feedback}
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@traceable
|
| 63 |
+
def route_blog(state: State):
|
| 64 |
+
"""Route back to blog generator or end based upon feedback from evaluator"""
|
| 65 |
+
if state["good_or_revise"] == "good":
|
| 66 |
+
return "Accepted"
|
| 67 |
+
elif state["good_or_revise"] == "needs revision":
|
| 68 |
+
return "llm_call_generator"
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Build workflow
|
| 72 |
+
optimizer_builder = StateGraph(State)
|
| 73 |
+
|
| 74 |
+
# Add the nodes
|
| 75 |
+
optimizer_builder.add_node("llm_call_generator", llm_call_generator)
|
| 76 |
+
optimizer_builder.add_node("llm_call_evaluator", llm_call_evaluator)
|
| 77 |
+
|
| 78 |
+
# Add edges to connect nodes
|
| 79 |
+
optimizer_builder.add_edge(START, "llm_call_generator")
|
| 80 |
+
optimizer_builder.add_edge("llm_call_generator", "llm_call_evaluator")
|
| 81 |
+
optimizer_builder.add_conditional_edges(
|
| 82 |
+
"llm_call_evaluator",
|
| 83 |
+
route_blog,
|
| 84 |
+
{
|
| 85 |
+
"Accepted": END,
|
| 86 |
+
"llm_call_generator": "llm_call_generator",
|
| 87 |
+
},
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Compile the workflow
|
| 91 |
+
optimizer_workflow = optimizer_builder.compile()
|
| 92 |
+
|
| 93 |
+
# Show the workflow
|
| 94 |
+
display(Image(optimizer_workflow.get_graph().draw_mermaid_png()))
|
| 95 |
+
|
| 96 |
+
# Invoke
|
| 97 |
+
state = optimizer_workflow.invoke({"topic": "Vibe Coding"})
|
| 98 |
+
print(state["blog"])
|
code_peer_review_parallel.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from typing import TypedDict
|
| 4 |
+
from langchain_groq import ChatGroq
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from langsmith import traceable
|
| 7 |
+
from langgraph.graph import StateGraph, START, END
|
| 8 |
+
from IPython.display import Image, display
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 13 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 14 |
+
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
| 15 |
+
|
| 16 |
+
llm = ChatGroq(model="qwen-2.5-32b")
|
| 17 |
+
|
| 18 |
+
# Graph state
|
| 19 |
+
class State(TypedDict):
|
| 20 |
+
code_snippet: str # input
|
| 21 |
+
readability_feedback: str # intermediate
|
| 22 |
+
security_feedback: str # intermediate
|
| 23 |
+
best_practices_feedback: str # intermediate
|
| 24 |
+
feedback_aggregator: str # output
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Nodes
|
| 28 |
+
@traceable
|
| 29 |
+
def get_readability_feedback(state: State):
|
| 30 |
+
"""First LLM call to check code readability"""
|
| 31 |
+
msg = llm.invoke(
|
| 32 |
+
f"Provide readability feedback for the following code:\n\n {state['code_snippet']}"
|
| 33 |
+
)
|
| 34 |
+
return {"readability_feedback": msg.content}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@traceable
|
| 38 |
+
def get_security_feedback(state: State):
|
| 39 |
+
"""Second LLM call to check for security vulnerabilities in code"""
|
| 40 |
+
msg = llm.invoke(
|
| 41 |
+
f"Check for potential security vulnerabilities in the following code and provide feedback:\n\n {state['code_snippet']}"
|
| 42 |
+
)
|
| 43 |
+
return {"security_feedback": msg.content}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@traceable
|
| 47 |
+
def get_best_practices_feedback(state: State):
|
| 48 |
+
"""Third LLM call to check for adherence to coding best practices"""
|
| 49 |
+
msg = llm.invoke(
|
| 50 |
+
f"Evaluate the adherence to coding best practices in the following code and provide feedback:\n\n {state['code_snippet']}"
|
| 51 |
+
)
|
| 52 |
+
return {"best_practices_feedback": msg.content}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@traceable
|
| 56 |
+
def aggregate_feedback(state: State):
|
| 57 |
+
"""Combine all the feedback from the three LLM calls into a single output"""
|
| 58 |
+
combined = f"Here's the overall feedback for the code:\n\n"
|
| 59 |
+
combined += f"READABILITY FEEDBACK:\n{state['readability_feedback']}\n\n"
|
| 60 |
+
combined += f"SECURITY FEEDBACK:\n{state['security_feedback']}\n\n"
|
| 61 |
+
combined += f"BEST PRACTICES FEEDBACK:\n{state['best_practices_feedback']}"
|
| 62 |
+
return {"feedback_aggregator": combined}
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# Build workflow
|
| 66 |
+
parallel_builder = StateGraph(State)
|
| 67 |
+
|
| 68 |
+
# Add nodes - Corrected node names
|
| 69 |
+
parallel_builder.add_node("get_readability_feedback", get_readability_feedback)
|
| 70 |
+
parallel_builder.add_node("get_security_feedback", get_security_feedback)
|
| 71 |
+
parallel_builder.add_node("get_best_practices_feedback", get_best_practices_feedback)
|
| 72 |
+
parallel_builder.add_node("aggregate_feedback", aggregate_feedback)
|
| 73 |
+
|
| 74 |
+
# Add edges to connect nodes
|
| 75 |
+
parallel_builder.add_edge(START, "get_readability_feedback")
|
| 76 |
+
parallel_builder.add_edge(START, "get_security_feedback")
|
| 77 |
+
parallel_builder.add_edge(START, "get_best_practices_feedback")
|
| 78 |
+
parallel_builder.add_edge("get_readability_feedback", "aggregate_feedback")
|
| 79 |
+
parallel_builder.add_edge("get_security_feedback", "aggregate_feedback")
|
| 80 |
+
parallel_builder.add_edge("get_best_practices_feedback", "aggregate_feedback")
|
| 81 |
+
parallel_builder.add_edge("aggregate_feedback", END)
|
| 82 |
+
|
| 83 |
+
parallel_workflow = parallel_builder.compile()
|
| 84 |
+
|
| 85 |
+
# Show workflow - Try and except to handle the timeout
|
| 86 |
+
try:
|
| 87 |
+
display(Image(parallel_workflow.get_graph().draw_mermaid_png()))
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error generating Mermaid diagram: {e}")
|
| 90 |
+
|
| 91 |
+
# Invoke
|
| 92 |
+
# Here is an example of a program, you can change it for any python code.
|
| 93 |
+
full_program = """
|
| 94 |
+
import os
|
| 95 |
+
from dotenv import load_dotenv
|
| 96 |
+
|
| 97 |
+
load_dotenv()
|
| 98 |
+
|
| 99 |
+
print(os.getenv("LANGCHAIN_API_KEY"))
|
| 100 |
+
"""
|
| 101 |
+
state = parallel_workflow.invoke({"code_snippet": full_program})
|
| 102 |
+
print(state["feedback_aggregator"])
|
| 103 |
+
|
learning_path_orchestrator.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from typing import TypedDict, List, Annotated
|
| 4 |
+
from langchain_groq import ChatGroq
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from langsmith import traceable
|
| 7 |
+
from langgraph.graph import StateGraph, START, END
|
| 8 |
+
from IPython.display import Image, display, Markdown
|
| 9 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 10 |
+
from langgraph.constants import Send
|
| 11 |
+
import operator
|
| 12 |
+
|
| 13 |
+
# Load environment variables
|
| 14 |
+
load_dotenv()
|
| 15 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 16 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 17 |
+
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
| 18 |
+
|
| 19 |
+
# Initialize LLM model
|
| 20 |
+
llm = ChatGroq(model="qwen-2.5-32b")
|
| 21 |
+
|
| 22 |
+
# ----------------------------
|
| 23 |
+
# 1οΈβ£ Define Custom Data Structures
|
| 24 |
+
# ----------------------------
|
| 25 |
+
|
| 26 |
+
class Topic(BaseModel):
|
| 27 |
+
"""Represents a learning topic with a name and description."""
|
| 28 |
+
name: str = Field(description="Name of the learning topic.")
|
| 29 |
+
description: str = Field(description="Brief overview of the topic.")
|
| 30 |
+
|
| 31 |
+
class Topics(BaseModel):
|
| 32 |
+
"""Wrapper for a list of learning topics."""
|
| 33 |
+
topics: List[Topic] = Field(description="List of topics to learn.")
|
| 34 |
+
|
| 35 |
+
# Augment the LLM with structured schema
|
| 36 |
+
planner = llm.with_structured_output(Topics)
|
| 37 |
+
|
| 38 |
+
# Define the state that carries data throughout the workflow
|
| 39 |
+
class State(TypedDict):
|
| 40 |
+
user_skills: str
|
| 41 |
+
user_goals: str
|
| 42 |
+
topics: List[Topic]
|
| 43 |
+
completed_topics: Annotated[List[str], operator.add] # Merging completed topics
|
| 44 |
+
learning_roadmap: str
|
| 45 |
+
|
| 46 |
+
# Worker state for topic processing
|
| 47 |
+
class WorkerState(TypedDict):
|
| 48 |
+
topic: Topic
|
| 49 |
+
completed_topics: List[str]
|
| 50 |
+
|
| 51 |
+
# ----------------------------
|
| 52 |
+
# 2οΈβ£ Define Core Processing Functions
|
| 53 |
+
# ----------------------------
|
| 54 |
+
|
| 55 |
+
@traceable
|
| 56 |
+
def orchestrator(state: State):
|
| 57 |
+
"""Creates a study plan based on user skills and goals."""
|
| 58 |
+
|
| 59 |
+
# LLM generates a structured study plan
|
| 60 |
+
study_plan = planner.invoke([
|
| 61 |
+
SystemMessage(
|
| 62 |
+
content="Create a detailed study plan based on user skills and goals."
|
| 63 |
+
),
|
| 64 |
+
HumanMessage(
|
| 65 |
+
content=f"User skills: {state['user_skills']}\nUser goals: {state['user_goals']}"
|
| 66 |
+
),
|
| 67 |
+
])
|
| 68 |
+
|
| 69 |
+
print("Study Plan:", study_plan)
|
| 70 |
+
|
| 71 |
+
return {"topics": study_plan.topics} # Returns generated topics
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@traceable
|
| 75 |
+
def llm_call(state: WorkerState):
|
| 76 |
+
"""Generates a content summary for a specific topic."""
|
| 77 |
+
|
| 78 |
+
# LLM processes the topic and generates a summary
|
| 79 |
+
topic_summary = llm.invoke([
|
| 80 |
+
SystemMessage(
|
| 81 |
+
content="Generate a content summary for the provided topic."
|
| 82 |
+
),
|
| 83 |
+
HumanMessage(
|
| 84 |
+
content=f"Topic: {state['topic'].name}\nDescription: {state['topic'].description}"
|
| 85 |
+
),
|
| 86 |
+
])
|
| 87 |
+
|
| 88 |
+
return {"completed_topics": [topic_summary.content]} # Returns generated summary
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@traceable
|
| 92 |
+
def synthesizer(state: State):
|
| 93 |
+
"""Compiles topic summaries into a structured learning roadmap."""
|
| 94 |
+
|
| 95 |
+
topic_summaries = state["completed_topics"]
|
| 96 |
+
learning_roadmap = "\n\n---\n\n".join(topic_summaries) # Formatting output
|
| 97 |
+
|
| 98 |
+
return {"learning_roadmap": learning_roadmap} # Returns final roadmap
|
| 99 |
+
|
| 100 |
+
# ----------------------------
|
| 101 |
+
# 3οΈβ£ Define Conditional Edge Function (Before Using It)
|
| 102 |
+
# ----------------------------
|
| 103 |
+
|
| 104 |
+
def assign_workers(state: State):
|
| 105 |
+
"""Assigns a worker (llm_call) to each topic in the plan."""
|
| 106 |
+
|
| 107 |
+
return [Send("llm_call", {"topic": t}) for t in state["topics"]] # Creates worker tasks
|
| 108 |
+
|
| 109 |
+
# ----------------------------
|
| 110 |
+
# 4οΈβ£ Build Workflow
|
| 111 |
+
# ----------------------------
|
| 112 |
+
|
| 113 |
+
learning_path_builder = StateGraph(State)
|
| 114 |
+
|
| 115 |
+
# Add nodes
|
| 116 |
+
learning_path_builder.add_node("orchestrator", orchestrator)
|
| 117 |
+
learning_path_builder.add_node("llm_call", llm_call)
|
| 118 |
+
learning_path_builder.add_node("synthesizer", synthesizer)
|
| 119 |
+
|
| 120 |
+
# Define execution order using edges
|
| 121 |
+
learning_path_builder.add_edge(START, "orchestrator") # Start with orchestrator
|
| 122 |
+
learning_path_builder.add_conditional_edges("orchestrator", assign_workers, ["llm_call"]) # Assign workers
|
| 123 |
+
learning_path_builder.add_edge("llm_call", "synthesizer") # Process topics
|
| 124 |
+
learning_path_builder.add_edge("synthesizer", END) # End workflow
|
| 125 |
+
|
| 126 |
+
# Compile workflow
|
| 127 |
+
learning_path_workflow = learning_path_builder.compile()
|
| 128 |
+
|
| 129 |
+
# ----------------------------
|
| 130 |
+
# 5οΈβ£ Run the Workflow
|
| 131 |
+
# ----------------------------
|
| 132 |
+
|
| 133 |
+
user_skills = "Python programming, basic machine learning concepts"
|
| 134 |
+
user_goals = "Learn advanced AI, master prompt engineering, and build AI applications"
|
| 135 |
+
|
| 136 |
+
state = learning_path_workflow.invoke(
|
| 137 |
+
{"user_skills": user_skills, "user_goals": user_goals}
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Display the final learning roadmap
|
| 141 |
+
Markdown(state["learning_roadmap"])
|
orchestrator_data_flow.md
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Data Flow Breakdown in learning_path_orchestrator
|
| 2 |
+
We follow a structured data pipeline where each step modifies and passes data to the next stage.
|
| 3 |
+
|
| 4 |
+
1οΈβ£ Define Custom Data Structures
|
| 5 |
+
- Topic (BaseModel) β Represents a single topic with name and description.
|
| 6 |
+
- Topics (BaseModel) β A wrapper around multiple Topic objects (essentially a list of topics).
|
| 7 |
+
- State (TypedDict) β Holds global state, including user input, generated topics, and completed topics.
|
| 8 |
+
- WorkerState (TypedDict) β Holds individual topic assignments for processing.
|
| 9 |
+
|
| 10 |
+
2οΈβ£ Step-by-Step Data Flow
|
| 11 |
+
|
| 12 |
+
Step 1: Orchestrator Generates Topics
|
| 13 |
+
Input: user_skills and user_goals
|
| 14 |
+
Process: Calls planner.invoke(), which uses an LLM (Groq API) to generate topics.
|
| 15 |
+
Output: A structured Topics object (a list of Topic objects).
|
| 16 |
+
Storage: The topics list is saved inside State.
|
| 17 |
+
Returns: {"topics": study_plan.topics}
|
| 18 |
+
π Key Detail:
|
| 19 |
+
The Orchestrator only generates topics and doesnβt process them. It assigns each topic to workers.
|
| 20 |
+
|
| 21 |
+
Step 2: Assign Workers to Each Topic
|
| 22 |
+
Function: assign_workers(state: State)
|
| 23 |
+
Process: Iterates over state["topics"] and assigns each topic to a worker (i.e., llm_call).
|
| 24 |
+
Returns: A list of dispatch instructions, sending each topic to the llm_call function.
|
| 25 |
+
Key Mechanism:
|
| 26 |
+
Uses Send("llm_call", {"topic": t}), which maps each topic to WorkerState.
|
| 27 |
+
π Key Detail:
|
| 28 |
+
This step distributes work in parallel across multiple workers, each handling a single topic.
|
| 29 |
+
|
| 30 |
+
Step 3: LLM Call Generates Topic Summaries
|
| 31 |
+
Function: llm_call(state: WorkerState)
|
| 32 |
+
Input: A single topic object (from WorkerState).
|
| 33 |
+
Process:
|
| 34 |
+
Calls the LLM (llm.invoke) with the topic's name and description.
|
| 35 |
+
Generates a summary + resources in markdown format.
|
| 36 |
+
Output:
|
| 37 |
+
{"completed_topics": [topic_summary.content]}
|
| 38 |
+
Storage: The summaries are stored inside completed_topics in State.
|
| 39 |
+
π Key Detail:
|
| 40 |
+
Each worker only receives one topic at a time. The WorkerState helps isolate one topic per call instead of processing everything at once.
|
| 41 |
+
|
| 42 |
+
Step 4: Synthesizer Combines Summaries into a Learning Roadmap
|
| 43 |
+
Function: synthesizer(state: State)
|
| 44 |
+
Input: completed_topics list (all processed topics).
|
| 45 |
+
Process: Joins all summaries together into a structured format.
|
| 46 |
+
Output: {"learning_roadmap": learning_roadmap}
|
| 47 |
+
Final Storage: The roadmap is stored inside State.
|
| 48 |
+
π Key Detail:
|
| 49 |
+
This step aggregates all topic summaries into a final, structured learning plan.
|
| 50 |
+
|
| 51 |
+
3οΈβ£ Where Does the Data Go?
|
| 52 |
+
Step Function Input Output Where the Data Goes
|
| 53 |
+
1 orchestrator(state) User skills & goals topics list Stored in State["topics"]
|
| 54 |
+
2 assign_workers(state) Topics list Send("llm_call", {"topic": t}) Sends each topic to llm_call
|
| 55 |
+
3 llm_call(state) A single topic {"completed_topics": [summary]} Appends to State["completed_topics"]
|
| 56 |
+
4 synthesizer(state) completed_topics list learning_roadmap Stores final roadmap in State["learning_roadmap"]
|
| 57 |
+
|
| 58 |
+
π Key Takeaways
|
| 59 |
+
- Orchestrator generates the topics based on user_skills and user_goals.
|
| 60 |
+
- Workers process each topic separately (using llm_call).
|
| 61 |
+
- WorkerState ensures only one topic is processed per worker to avoid mixing topics.
|
| 62 |
+
- The synthesizer combines all results into a final structured roadmap.
|
| 63 |
+
- Data flows in a structured manner through State and WorkerState, ensuring modular and parallel execution.
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
python-dotenv
|
| 3 |
+
langchain-openai
|
| 4 |
+
langchain-core
|
| 5 |
+
langchain-community
|
| 6 |
+
bs4
|
| 7 |
+
faiss-cpu
|
| 8 |
+
pypdf
|
| 9 |
+
arxiv
|
| 10 |
+
pymupdf
|
| 11 |
+
wikipedia
|
| 12 |
+
lxml
|
| 13 |
+
langchain_huggingface
|
| 14 |
+
langchain-groq
|
| 15 |
+
langgraph
|
| 16 |
+
langgraph-cli[inmem]
|
| 17 |
+
streamlit
|