Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AlbertTokenizer, AlbertForSequenceClassification, BertTokenizer, BertForSequenceClassification
|
| 4 |
+
import numpy as np
|
| 5 |
+
import joblib
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Load ALBERT model
|
| 9 |
+
albert_model = AlbertForSequenceClassification.from_pretrained("Deepaksai1/albert-fraud-detector")
|
| 10 |
+
albert_tokenizer = AlbertTokenizer.from_pretrained("Deepaksai1/albert-fraud-detector")
|
| 11 |
+
albert_model.eval()
|
| 12 |
+
|
| 13 |
+
# Load FinBERT model
|
| 14 |
+
finbert_model = BertForSequenceClassification.from_pretrained("Deepaksai1/finbert-fraud-detector")
|
| 15 |
+
finbert_tokenizer = BertTokenizer.from_pretrained("Deepaksai1/finbert-fraud-detector")
|
| 16 |
+
finbert_model.eval()
|
| 17 |
+
|
| 18 |
+
# Load CatBoost model
|
| 19 |
+
from catboost import CatBoostClassifier
|
| 20 |
+
catboost_model_path = "catboost_fraud_model.cbm"
|
| 21 |
+
catboost_model = CatBoostClassifier()
|
| 22 |
+
catboost_model.load_model(catboost_model_path)
|
| 23 |
+
|
| 24 |
+
# CatBoost prediction (expects structured features, here we simulate with dummy value)
|
| 25 |
+
def predict_with_catboost(text):
|
| 26 |
+
# Simulate with simple heuristic
|
| 27 |
+
amount = float([s for s in text.split(',') if 'Amount' in s][0].split(':')[1].strip())
|
| 28 |
+
prediction = catboost_model.predict([[amount]])[0]
|
| 29 |
+
proba = catboost_model.predict_proba([[amount]])[0][1]
|
| 30 |
+
return ("Fraud" if prediction == 1 else "Not Fraud"), float(proba)
|
| 31 |
+
|
| 32 |
+
# ALBERT prediction
|
| 33 |
+
def predict_with_albert(text):
|
| 34 |
+
inputs = albert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=64)
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
outputs = albert_model(**inputs)
|
| 37 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 38 |
+
pred_class = torch.argmax(probs).item()
|
| 39 |
+
pred_prob = probs[0][1].item()
|
| 40 |
+
return ("Fraud" if pred_class == 1 else "Not Fraud"), float(pred_prob)
|
| 41 |
+
|
| 42 |
+
# FinBERT prediction
|
| 43 |
+
def predict_with_finbert(text):
|
| 44 |
+
inputs = finbert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=64)
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
outputs = finbert_model(**inputs)
|
| 47 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 48 |
+
pred_class = torch.argmax(probs).item()
|
| 49 |
+
pred_prob = probs[0][1].item()
|
| 50 |
+
return ("Fraud" if pred_class == 1 else "Not Fraud"), float(pred_prob)
|
| 51 |
+
|
| 52 |
+
# Main prediction selector
|
| 53 |
+
def predict(text, model_name):
|
| 54 |
+
if model_name == "ALBERT":
|
| 55 |
+
return predict_with_albert(text)
|
| 56 |
+
elif model_name == "FinBERT":
|
| 57 |
+
return predict_with_finbert(text)
|
| 58 |
+
elif model_name == "CatBoost":
|
| 59 |
+
return predict_with_catboost(text)
|
| 60 |
+
else:
|
| 61 |
+
return "Unknown Model", 0.0
|
| 62 |
+
|
| 63 |
+
# Example transactions
|
| 64 |
+
examples = [
|
| 65 |
+
"Step: 305, Type: CASH_OUT, Amount: 2321633.57, Origin Balance: 2321633.57, Dest Balance: 0.0",
|
| 66 |
+
"Step: 6, Type: CASH_OUT, Amount: 13704.0, Origin Balance: 13704.0, Dest Balance: 3382.84",
|
| 67 |
+
"Step: 285, Type: TRANSFER, Amount: 125487.45, Origin Balance: 0.0, Dest Balance: 524556.64",
|
| 68 |
+
"Step: 352, Type: PAYMENT, Amount: 41263.42, Origin Balance: 0.0, Dest Balance: 0.0",
|
| 69 |
+
"Step: 372, Type: CASH_IN, Amount: 187503.32, Origin Balance: 76827.0, Dest Balance: 0.0"
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
# Gradio interface
|
| 73 |
+
gui = gr.Interface(
|
| 74 |
+
fn=predict,
|
| 75 |
+
inputs=[
|
| 76 |
+
gr.Textbox(label="Enter Transaction Description"),
|
| 77 |
+
gr.Dropdown(choices=["ALBERT", "FinBERT", "CatBoost"], label="Select Model", value="ALBERT")
|
| 78 |
+
],
|
| 79 |
+
outputs=[
|
| 80 |
+
gr.Label(label="Prediction"),
|
| 81 |
+
gr.Number(label="Fraud Probability")
|
| 82 |
+
],
|
| 83 |
+
examples=[[ex, "ALBERT"] for ex in examples],
|
| 84 |
+
title="💸 Fraud Detection Assistant (ALBERT, FinBERT, CatBoost)",
|
| 85 |
+
description="Analyze transaction text for fraud using your choice of model."
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Launch
|
| 89 |
+
if __name__ == "__main__":
|
| 90 |
+
gui.launch()
|