Spaces:
Runtime error
Runtime error
Deepak Yadav
commited on
Commit
Β·
7f98036
1
Parent(s):
7cf558f
replaced the llm model with gguf format model
Browse files- .gitignore +2 -0
- app.py +23 -11
- requirements.txt +2 -1
- services/llm.py +14 -7
.gitignore
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
# Byte-compiled / optimized / DLL files
|
|
|
|
|
|
|
| 2 |
__pycache__/
|
| 3 |
*.py[cod]
|
| 4 |
*$py.class
|
|
|
|
| 1 |
# Byte-compiled / optimized / DLL files
|
| 2 |
+
docs/
|
| 3 |
+
myenv/
|
| 4 |
__pycache__/
|
| 5 |
*.py[cod]
|
| 6 |
*$py.class
|
app.py
CHANGED
|
@@ -7,12 +7,12 @@ from services.pdf_processing import load_and_split_pdf
|
|
| 7 |
from utils.helpers import extract_thoughts, response_generator
|
| 8 |
import subprocess
|
| 9 |
|
| 10 |
-
try:
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
except subprocess.CalledProcessError as e:
|
| 15 |
-
|
| 16 |
|
| 17 |
|
| 18 |
# Custom CSS for chat styling
|
|
@@ -70,7 +70,7 @@ st.sidebar.write("---")
|
|
| 70 |
# Hyperparameters
|
| 71 |
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.7, 0.1)
|
| 72 |
top_p = st.sidebar.slider("Top-p (Nucleus Sampling)", 0.0, 1.0, 0.9, 0.05)
|
| 73 |
-
max_tokens = st.sidebar.number_input("Max Tokens", 10, 2048,
|
| 74 |
st.sidebar.write("---")
|
| 75 |
|
| 76 |
# File Upload
|
|
@@ -111,12 +111,15 @@ if "messages" not in st.session_state:
|
|
| 111 |
|
| 112 |
# Display previous messages
|
| 113 |
for message in st.session_state.messages:
|
|
|
|
|
|
|
|
|
|
| 114 |
with st.chat_message(message["role"]):
|
| 115 |
st.markdown(message["content"])
|
| 116 |
|
| 117 |
# Chat Input
|
| 118 |
if user_input := st.chat_input("π¬ Ask something..."):
|
| 119 |
-
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 120 |
|
| 121 |
with st.chat_message("user"):
|
| 122 |
st.markdown(user_input)
|
|
@@ -127,13 +130,22 @@ if user_input := st.chat_input("π¬ Ask something..."):
|
|
| 127 |
# Generate response
|
| 128 |
context = retrive_vector_store(retriever, user_input) if retriever else "No context"
|
| 129 |
query = generate_prompt(context=context, question=user_input)
|
| 130 |
-
response = llm.invoke(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
# Calculate response time
|
| 133 |
response_time = round(time.time() - start_time, 2)
|
| 134 |
|
| 135 |
# Extract thoughts and main answer
|
| 136 |
-
thinking_part, main_answer = extract_thoughts(response)
|
| 137 |
|
| 138 |
# Display AI response
|
| 139 |
with st.chat_message("assistant"):
|
|
@@ -150,4 +162,4 @@ if user_input := st.chat_input("π¬ Ask something..."):
|
|
| 150 |
st.markdown(formatted_response, unsafe_allow_html=True)
|
| 151 |
|
| 152 |
# Save to session history
|
| 153 |
-
st.session_state.messages.append({"role": "assistant", "content": formatted_response})
|
|
|
|
| 7 |
from utils.helpers import extract_thoughts, response_generator
|
| 8 |
import subprocess
|
| 9 |
|
| 10 |
+
# try:
|
| 11 |
+
# print("π Checking and starting Ollama...")
|
| 12 |
+
# subprocess.run(["bash", "install_ollama.sh"], check=True)
|
| 13 |
+
# print("β
Ollama is running!")
|
| 14 |
+
# except subprocess.CalledProcessError as e:
|
| 15 |
+
# print(f"β Error: {e}")
|
| 16 |
|
| 17 |
|
| 18 |
# Custom CSS for chat styling
|
|
|
|
| 70 |
# Hyperparameters
|
| 71 |
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.7, 0.1)
|
| 72 |
top_p = st.sidebar.slider("Top-p (Nucleus Sampling)", 0.0, 1.0, 0.9, 0.05)
|
| 73 |
+
max_tokens = st.sidebar.number_input("Max Tokens", 10, 2048, 1024, 10)
|
| 74 |
st.sidebar.write("---")
|
| 75 |
|
| 76 |
# File Upload
|
|
|
|
| 111 |
|
| 112 |
# Display previous messages
|
| 113 |
for message in st.session_state.messages:
|
| 114 |
+
if message['thinking_part']:
|
| 115 |
+
with st.expander("π Thought Process"):
|
| 116 |
+
st.markdown(message['thinking_part'])
|
| 117 |
with st.chat_message(message["role"]):
|
| 118 |
st.markdown(message["content"])
|
| 119 |
|
| 120 |
# Chat Input
|
| 121 |
if user_input := st.chat_input("π¬ Ask something..."):
|
| 122 |
+
st.session_state.messages.append({"role": "user", "content": user_input, "thinking_part": False})
|
| 123 |
|
| 124 |
with st.chat_message("user"):
|
| 125 |
st.markdown(user_input)
|
|
|
|
| 130 |
# Generate response
|
| 131 |
context = retrive_vector_store(retriever, user_input) if retriever else "No context"
|
| 132 |
query = generate_prompt(context=context, question=user_input)
|
| 133 |
+
# response = llm.invoke(query)
|
| 134 |
+
|
| 135 |
+
response = llm.create_chat_completion(
|
| 136 |
+
messages = [
|
| 137 |
+
{
|
| 138 |
+
"role": "user",
|
| 139 |
+
"content": f"{query}"
|
| 140 |
+
}
|
| 141 |
+
]
|
| 142 |
+
)
|
| 143 |
|
| 144 |
# Calculate response time
|
| 145 |
response_time = round(time.time() - start_time, 2)
|
| 146 |
|
| 147 |
# Extract thoughts and main answer
|
| 148 |
+
thinking_part, main_answer = extract_thoughts(response['choices'][0]['message']['content'])
|
| 149 |
|
| 150 |
# Display AI response
|
| 151 |
with st.chat_message("assistant"):
|
|
|
|
| 162 |
st.markdown(formatted_response, unsafe_allow_html=True)
|
| 163 |
|
| 164 |
# Save to session history
|
| 165 |
+
st.session_state.messages.append({"role": "assistant", "content": formatted_response, "thinking_part": thinking_part})
|
requirements.txt
CHANGED
|
@@ -9,4 +9,5 @@ faiss-cpu
|
|
| 9 |
pymupdf
|
| 10 |
ollama
|
| 11 |
langchain_ollama
|
| 12 |
-
langchain_huggingface
|
|
|
|
|
|
| 9 |
pymupdf
|
| 10 |
ollama
|
| 11 |
langchain_ollama
|
| 12 |
+
langchain_huggingface
|
| 13 |
+
llama-cpp-python
|
services/llm.py
CHANGED
|
@@ -1,17 +1,24 @@
|
|
| 1 |
from langchain_ollama import OllamaLLM
|
|
|
|
| 2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
|
| 6 |
@st.cache_resource
|
| 7 |
def initialize_llm(model_name, temperature, top_p, max_tokens):
|
| 8 |
-
# Configure the LLM with additional parameters
|
| 9 |
-
llm = OllamaLLM(
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
)
|
| 16 |
return llm
|
| 17 |
|
|
|
|
| 1 |
from langchain_ollama import OllamaLLM
|
| 2 |
+
from llama_cpp import Llama
|
| 3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
import streamlit as st
|
| 5 |
|
| 6 |
|
| 7 |
@st.cache_resource
|
| 8 |
def initialize_llm(model_name, temperature, top_p, max_tokens):
|
| 9 |
+
# # Configure the LLM with additional parameters
|
| 10 |
+
# llm = OllamaLLM(
|
| 11 |
+
# model=model_name,
|
| 12 |
+
# base_url="https://deepak7376-ollama-server.hf.space",
|
| 13 |
+
# temperature=temperature, # Controls randomness (0 = deterministic, 1 = max randomness)
|
| 14 |
+
# max_tokens=max_tokens, # Limit the number of tokens in the output
|
| 15 |
+
# top_p=top_p # Nucleus sampling for controlling diversity
|
| 16 |
+
# )
|
| 17 |
+
llm = Llama.from_pretrained(
|
| 18 |
+
repo_id="bartowski/DeepSeek-R1-Distill-Qwen-1.5B-GGUF",
|
| 19 |
+
filename="DeepSeek-R1-Distill-Qwen-1.5B-IQ4_XS.gguf",
|
| 20 |
+
n_ctx=max_tokens
|
| 21 |
+
|
| 22 |
)
|
| 23 |
return llm
|
| 24 |
|