Spaces:
Runtime error
Runtime error
Commit
·
111afc4
1
Parent(s):
a63eb02
Update app.py
Browse files
app.py
CHANGED
|
@@ -44,14 +44,9 @@ def data_ingestion():
|
|
| 44 |
#create embeddings here
|
| 45 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 46 |
vectordb = FAISS.from_documents(splits, embeddings)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# #create vector store here
|
| 50 |
-
# db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
| 51 |
-
# db.persist()
|
| 52 |
-
# db=None
|
| 53 |
-
|
| 54 |
|
|
|
|
| 55 |
@st.cache_resource
|
| 56 |
def qa_llm():
|
| 57 |
pipe = pipeline(
|
|
@@ -68,23 +63,24 @@ def qa_llm():
|
|
| 68 |
llm = HuggingFacePipeline(pipeline=pipe)
|
| 69 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 70 |
|
| 71 |
-
|
| 72 |
retriever = db.as_retriever()
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
| 78 |
)
|
| 79 |
-
return
|
| 80 |
|
| 81 |
def process_answer(instruction):
|
| 82 |
response = ''
|
| 83 |
instruction = instruction
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
return
|
| 88 |
|
| 89 |
def get_file_size(file):
|
| 90 |
file.seek(0, os.SEEK_END)
|
|
@@ -162,11 +158,5 @@ def main():
|
|
| 162 |
display_conversation(st.session_state)
|
| 163 |
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
if __name__ == "__main__":
|
| 171 |
main()
|
| 172 |
-
|
|
|
|
| 44 |
#create embeddings here
|
| 45 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 46 |
vectordb = FAISS.from_documents(splits, embeddings)
|
| 47 |
+
vectordb.save_local("faiss_index")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
|
| 50 |
@st.cache_resource
|
| 51 |
def qa_llm():
|
| 52 |
pipe = pipeline(
|
|
|
|
| 63 |
llm = HuggingFacePipeline(pipeline=pipe)
|
| 64 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 65 |
|
| 66 |
+
vectordb = FAISS.load_local("faiss_index", embeddings)
|
| 67 |
retriever = db.as_retriever()
|
| 68 |
+
|
| 69 |
+
# Build a QA chain
|
| 70 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 71 |
+
llm=llm,
|
| 72 |
+
chain_type="stuff",
|
| 73 |
+
retriever=vectordb.as_retriever(),
|
| 74 |
)
|
| 75 |
+
return qa_chain
|
| 76 |
|
| 77 |
def process_answer(instruction):
|
| 78 |
response = ''
|
| 79 |
instruction = instruction
|
| 80 |
+
qa_chain = qa_llm()
|
| 81 |
+
|
| 82 |
+
generated_text = qa_chain.run(instruction)
|
| 83 |
+
return generated_text
|
| 84 |
|
| 85 |
def get_file_size(file):
|
| 86 |
file.seek(0, os.SEEK_END)
|
|
|
|
| 158 |
display_conversation(st.session_state)
|
| 159 |
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
if __name__ == "__main__":
|
| 162 |
main()
|
|
|