Deepak7376 commited on
Commit
111afc4
1 Parent(s): a63eb02

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -24
app.py CHANGED
@@ -44,14 +44,9 @@ def data_ingestion():
44
  #create embeddings here
45
  embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
46
  vectordb = FAISS.from_documents(splits, embeddings)
47
-
48
-
49
- # #create vector store here
50
- # db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
51
- # db.persist()
52
- # db=None
53
-
54
 
 
55
  @st.cache_resource
56
  def qa_llm():
57
  pipe = pipeline(
@@ -68,23 +63,24 @@ def qa_llm():
68
  llm = HuggingFacePipeline(pipeline=pipe)
69
  embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
70
 
71
- db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
72
  retriever = db.as_retriever()
73
- qa = RetrievalQA.from_chain_type(
74
- llm = llm,
75
- chain_type = "stuff",
76
- retriever = retriever,
77
- return_source_documents=True
 
78
  )
79
- return qa
80
 
81
  def process_answer(instruction):
82
  response = ''
83
  instruction = instruction
84
- qa = qa_llm()
85
- generated_text = qa(instruction)
86
- answer = generated_text['result']
87
- return answer
88
 
89
  def get_file_size(file):
90
  file.seek(0, os.SEEK_END)
@@ -162,11 +158,5 @@ def main():
162
  display_conversation(st.session_state)
163
 
164
 
165
-
166
-
167
-
168
-
169
-
170
  if __name__ == "__main__":
171
  main()
172
-
 
44
  #create embeddings here
45
  embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
46
  vectordb = FAISS.from_documents(splits, embeddings)
47
+ vectordb.save_local("faiss_index")
 
 
 
 
 
 
48
 
49
+
50
  @st.cache_resource
51
  def qa_llm():
52
  pipe = pipeline(
 
63
  llm = HuggingFacePipeline(pipeline=pipe)
64
  embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
65
 
66
+ vectordb = FAISS.load_local("faiss_index", embeddings)
67
  retriever = db.as_retriever()
68
+
69
+ # Build a QA chain
70
+ qa_chain = RetrievalQA.from_chain_type(
71
+ llm=llm,
72
+ chain_type="stuff",
73
+ retriever=vectordb.as_retriever(),
74
  )
75
+ return qa_chain
76
 
77
  def process_answer(instruction):
78
  response = ''
79
  instruction = instruction
80
+ qa_chain = qa_llm()
81
+
82
+ generated_text = qa_chain.run(instruction)
83
+ return generated_text
84
 
85
  def get_file_size(file):
86
  file.seek(0, os.SEEK_END)
 
158
  display_conversation(st.session_state)
159
 
160
 
 
 
 
 
 
161
  if __name__ == "__main__":
162
  main()