Spaces:
Paused
Paused
Upload 2 files
Browse files- Dockerfile +1 -1
- Venkat.py +218 -0
Dockerfile
CHANGED
@@ -24,4 +24,4 @@ WORKDIR $HOME/app
|
|
24 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
25 |
COPY --chown=user . $HOME/app
|
26 |
|
27 |
-
CMD ["uvicorn", "
|
|
|
24 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
25 |
COPY --chown=user . $HOME/app
|
26 |
|
27 |
+
CMD ["uvicorn", "Venkat:app", "--host", "0.0.0.0", "--port", "7860"]
|
Venkat.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
|
3 |
+
# from transformers import pipeline
|
4 |
+
from txtai.embeddings import Embeddings
|
5 |
+
from txtai.pipeline import Extractor
|
6 |
+
from langchain.document_loaders import WebBaseLoader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
|
9 |
+
from langchain import HuggingFaceHub
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain.chains import LLMChain
|
12 |
+
from txtai.embeddings import Embeddings
|
13 |
+
from txtai.pipeline import Extractor
|
14 |
+
|
15 |
+
import pandas as pd
|
16 |
+
import sqlite3
|
17 |
+
import os
|
18 |
+
|
19 |
+
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
20 |
+
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
21 |
+
app = FastAPI(docs_url="/")
|
22 |
+
# app = FastAPI()
|
23 |
+
|
24 |
+
# pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
25 |
+
|
26 |
+
|
27 |
+
# @app.get("/generate")
|
28 |
+
# def generate(text: str):
|
29 |
+
# """
|
30 |
+
# Using the text2text-generation pipeline from `transformers`, generate text
|
31 |
+
# from the given input text. The model used is `google/flan-t5-small`, which
|
32 |
+
# can be found [here](https://huggingface.co/google/flan-t5-small).
|
33 |
+
# """
|
34 |
+
# output = pipe(text)
|
35 |
+
# return {"output": output[0]["generated_text"]}
|
36 |
+
|
37 |
+
|
38 |
+
def load_embeddings(
|
39 |
+
domain: str = "",
|
40 |
+
db_present: bool = True,
|
41 |
+
path: str = "sentence-transformers/all-MiniLM-L6-v2",
|
42 |
+
index_name: str = "index",
|
43 |
+
):
|
44 |
+
# Create embeddings model with content support
|
45 |
+
embeddings = Embeddings({"path": path, "content": True})
|
46 |
+
|
47 |
+
# if Vector DB is not present
|
48 |
+
if not db_present:
|
49 |
+
return embeddings
|
50 |
+
else:
|
51 |
+
if domain == "":
|
52 |
+
embeddings.load(index_name) # change this later
|
53 |
+
else:
|
54 |
+
print(3)
|
55 |
+
embeddings.load(f"{index_name}/{domain}")
|
56 |
+
return embeddings
|
57 |
+
|
58 |
+
|
59 |
+
def _check_if_db_exists(db_path: str) -> bool:
|
60 |
+
return os.path.exists(db_path)
|
61 |
+
|
62 |
+
|
63 |
+
def _text_splitter(doc):
|
64 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
65 |
+
chunk_size=500,
|
66 |
+
chunk_overlap=50,
|
67 |
+
length_function=len,
|
68 |
+
)
|
69 |
+
return text_splitter.transform_documents(doc)
|
70 |
+
|
71 |
+
|
72 |
+
def _load_docs(path: str):
|
73 |
+
load_doc = WebBaseLoader(path).load()
|
74 |
+
doc = _text_splitter(load_doc)
|
75 |
+
return doc
|
76 |
+
|
77 |
+
|
78 |
+
def _stream(dataset, limit, index: int = 0):
|
79 |
+
for row in dataset:
|
80 |
+
yield (index, row.page_content, None)
|
81 |
+
index += 1
|
82 |
+
|
83 |
+
if index >= limit:
|
84 |
+
break
|
85 |
+
|
86 |
+
|
87 |
+
def _max_index_id(path):
|
88 |
+
db = sqlite3.connect(path)
|
89 |
+
|
90 |
+
table = "sections"
|
91 |
+
df = pd.read_sql_query(f"select * from {table}", db)
|
92 |
+
return {"max_index": df["indexid"].max()}
|
93 |
+
|
94 |
+
|
95 |
+
def _upsert_docs(doc, embeddings, vector_doc_path: str, db_present: bool):
|
96 |
+
print(vector_doc_path)
|
97 |
+
if db_present:
|
98 |
+
print(1)
|
99 |
+
max_index = _max_index_id(f"{vector_doc_path}/documents")
|
100 |
+
print(max_index)
|
101 |
+
embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
|
102 |
+
print("Embeddings done!!")
|
103 |
+
embeddings.save(vector_doc_path)
|
104 |
+
print("Embeddings done - 1!!")
|
105 |
+
else:
|
106 |
+
print(2)
|
107 |
+
embeddings.index(_stream(doc, 500, 0))
|
108 |
+
embeddings.save(vector_doc_path)
|
109 |
+
max_index = _max_index_id(f"{vector_doc_path}/documents")
|
110 |
+
print(max_index)
|
111 |
+
# check
|
112 |
+
# max_index = _max_index_id(f"{vector_doc_path}/documents")
|
113 |
+
# print(max_index)
|
114 |
+
return max_index
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
@app.get("/index/{domain}/")
|
120 |
+
def get_domain_file_path(domain: str, file_path: str):
|
121 |
+
print(domain, file_path)
|
122 |
+
print(os.getcwd())
|
123 |
+
bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
124 |
+
print(bool_value)
|
125 |
+
if bool_value:
|
126 |
+
embeddings = load_embeddings(domain=domain, db_present=bool_value)
|
127 |
+
print(embeddings)
|
128 |
+
doc = _load_docs(file_path)
|
129 |
+
max_index = _upsert_docs(
|
130 |
+
doc=doc,
|
131 |
+
embeddings=embeddings,
|
132 |
+
vector_doc_path=f"{os.getcwd()}/index/{domain}",
|
133 |
+
db_present=bool_value,
|
134 |
+
)
|
135 |
+
# print("-------")
|
136 |
+
else:
|
137 |
+
embeddings = load_embeddings(domain=domain, db_present=bool_value)
|
138 |
+
doc = _load_docs(file_path)
|
139 |
+
max_index = _upsert_docs(
|
140 |
+
doc=doc,
|
141 |
+
embeddings=embeddings,
|
142 |
+
vector_doc_path=f"{os.getcwd()}/index/{domain}",
|
143 |
+
db_present=bool_value,
|
144 |
+
)
|
145 |
+
# print("Final - output : ", max_index)
|
146 |
+
return "Executed Successfully!!"
|
147 |
+
|
148 |
+
|
149 |
+
def _check_if_db_exists(db_path: str) -> bool:
|
150 |
+
return os.path.exists(db_path)
|
151 |
+
|
152 |
+
|
153 |
+
def _load_embeddings_from_db(
|
154 |
+
db_present: bool,
|
155 |
+
domain: str,
|
156 |
+
path: str = "sentence-transformers/all-MiniLM-L6-v2",
|
157 |
+
):
|
158 |
+
# Create embeddings model with content support
|
159 |
+
embeddings = Embeddings({"path": path, "content": True})
|
160 |
+
# if Vector DB is not present
|
161 |
+
if not db_present:
|
162 |
+
return embeddings
|
163 |
+
else:
|
164 |
+
if domain == "":
|
165 |
+
embeddings.load("index") # change this later
|
166 |
+
else:
|
167 |
+
print(3)
|
168 |
+
embeddings.load(f"{os.getcwd()}/index/{domain}")
|
169 |
+
return embeddings
|
170 |
+
|
171 |
+
|
172 |
+
def _prompt(question):
|
173 |
+
return f"""Answer the following question using only the context below. Say 'Could not find answer within the context' when the question can't be answered.
|
174 |
+
Question: {question}
|
175 |
+
Context: """
|
176 |
+
|
177 |
+
|
178 |
+
def _search(query, extractor, question=None):
|
179 |
+
# Default question to query if empty
|
180 |
+
if not question:
|
181 |
+
question = query
|
182 |
+
|
183 |
+
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
184 |
+
# Question: {question}
|
185 |
+
# Context: """
|
186 |
+
|
187 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
188 |
+
# llm_chain = LLMChain(prompt=prompt, llm=extractor)
|
189 |
+
|
190 |
+
# return {"question": question, "answer": llm_chain.run(question)}
|
191 |
+
return extractor([("answer", query, _prompt(question), False)])[0][1]
|
192 |
+
|
193 |
+
|
194 |
+
@app.get("/rag")
|
195 |
+
def rag(domain: str, question: str):
|
196 |
+
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
197 |
+
print(db_exists)
|
198 |
+
# if db_exists:
|
199 |
+
embeddings = _load_embeddings_from_db(db_exists, domain)
|
200 |
+
extractor = Extractor(embeddings)
|
201 |
+
# llm = HuggingFaceHub(
|
202 |
+
# repo_id="google/flan-t5-xxl",
|
203 |
+
# model_kwargs={"temperature": 1, "max_length": 1000000},
|
204 |
+
# )
|
205 |
+
# else:
|
206 |
+
answer = _search(question, extractor)
|
207 |
+
return {"question": question, "answer": answer}
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
'''
|
212 |
+
load embedding and models for extractor during start up
|
213 |
+
'''
|
214 |
+
|
215 |
+
# Create extractor instance
|
216 |
+
extractor = Extractor("google/flan-t5-base")
|
217 |
+
#extractor = Extractor(embeddings, "TheBloke/Llama-2-7B-GGUF")
|
218 |
+
#extractor = Extractor(embeddings, "google/flan-t5-xl")
|