rag-test-venkat / app.py
DeepVen's picture
Upload 9 files
84947fc
raw
history blame
693 Bytes
from fastapi import FastAPI
from transformers import pipeline
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
@app.get("/generate")
def generate(text: str):
"""
Using the text2text-generation pipeline from `transformers`, generate text
from the given input text. The model used is `google/flan-t5-small`, which
can be found [here](https://huggingface.co/google/flan-t5-small).
"""
output = pipe(text)
return {"output": output[0]["generated_text"]}