rag-test-venkat / Index.py
DeepVen's picture
Upload Index.py
292e068
raw
history blame
7.32 kB
from fastapi import FastAPI
# from transformers import pipeline
from txtai.embeddings import Embeddings
from txtai.pipeline import Extractor
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from txtai.embeddings import Embeddings
from txtai.pipeline import Extractor
import pandas as pd
import sqlite3
import os
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
# app = FastAPI()
# pipe = pipeline("text2text-generation", model="google/flan-t5-small")
# @app.get("/generate")
# def generate(text: str):
# """
# Using the text2text-generation pipeline from `transformers`, generate text
# from the given input text. The model used is `google/flan-t5-small`, which
# can be found [here](https://huggingface.co/google/flan-t5-small).
# """
# output = pipe(text)
# return {"output": output[0]["generated_text"]}
def load_embeddings(
domain: str = "",
db_present: bool = True,
path: str = "sentence-transformers/all-MiniLM-L6-v2",
index_name: str = "index",
):
# Create embeddings model with content support
embeddings = Embeddings({"path": path, "content": True})
# if Vector DB is not present
if not db_present:
return embeddings
else:
if domain == "":
embeddings.load(index_name) # change this later
else:
print(3)
embeddings.load(f"{index_name}/{domain}")
return embeddings
def _check_if_db_exists(db_path: str) -> bool:
return os.path.exists(db_path)
def _text_splitter(doc):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
length_function=len,
)
return text_splitter.transform_documents(doc)
def _load_docs(path: str):
load_doc = WebBaseLoader(path).load()
doc = _text_splitter(load_doc)
return doc
def _stream(dataset, limit, index: int = 0):
for row in dataset:
yield (index, row.page_content, None)
index += 1
if index >= limit:
break
def _max_index_id(path):
db = sqlite3.connect(path)
table = "sections"
df = pd.read_sql_query(f"select * from {table}", db)
return {"max_index": df["indexid"].max()}
def _upsert_docs(doc, embeddings, vector_doc_path: str, db_present: bool):
print(vector_doc_path)
if db_present:
print(1)
max_index = _max_index_id(f"{vector_doc_path}/documents")
print(max_index)
embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
print("Embeddings done!!")
embeddings.save(vector_doc_path)
print("Embeddings done - 1!!")
else:
print(2)
embeddings.index(_stream(doc, 500, 0))
embeddings.save(vector_doc_path)
max_index = _max_index_id(f"{vector_doc_path}/documents")
print(max_index)
# check
# max_index = _max_index_id(f"{vector_doc_path}/documents")
# print(max_index)
return max_index
# def prompt(question):
# return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
# Question: {question}
# Context: """
# def search(query, question=None):
# # Default question to query if empty
# if not question:
# question = query
# return extractor([("answer", query, prompt(question), False)])[0][1]
# @app.get("/rag")
# def rag(question: str):
# # question = "what is the document about?"
# answer = search(question)
# # print(question, answer)
# return {answer}
# @app.get("/index")
# def get_url_file_path(url_path: str):
# embeddings = load_embeddings()
# doc = _load_docs(url_path)
# embeddings, max_index = _upsert_docs(doc, embeddings)
# return max_index
@app.get("/index/{domain}/")
def get_domain_file_path(domain: str, file_path: str):
print(domain, file_path)
print(os.getcwd())
bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
print(bool_value)
if bool_value:
embeddings = load_embeddings(domain=domain, db_present=bool_value)
print(embeddings)
doc = _load_docs(file_path)
max_index = _upsert_docs(
doc=doc,
embeddings=embeddings,
vector_doc_path=f"{os.getcwd()}/index/{domain}",
db_present=bool_value,
)
# print("-------")
else:
embeddings = load_embeddings(domain=domain, db_present=bool_value)
doc = _load_docs(file_path)
max_index = _upsert_docs(
doc=doc,
embeddings=embeddings,
vector_doc_path=f"{os.getcwd()}/index/{domain}",
db_present=bool_value,
)
# print("Final - output : ", max_index)
return "Executed Successfully!!"
def _check_if_db_exists(db_path: str) -> bool:
return os.path.exists(db_path)
def _load_embeddings_from_db(
db_present: bool,
domain: str,
path: str = "sentence-transformers/all-MiniLM-L6-v2",
):
# Create embeddings model with content support
embeddings = Embeddings({"path": path, "content": True})
# if Vector DB is not present
if not db_present:
return embeddings
else:
if domain == "":
embeddings.load("index") # change this later
else:
print(3)
embeddings.load(f"{os.getcwd()}/index/{domain}")
return embeddings
def _prompt(question):
return f"""Answer the following question using only the context below. Say 'Could not find answer within the context' when the question can't be answered.
Question: {question}
Context: """
def _search(query, extractor, question=None):
# Default question to query if empty
if not question:
question = query
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
# Question: {question}
# Context: """
# prompt = PromptTemplate(template=template, input_variables=["question"])
# llm_chain = LLMChain(prompt=prompt, llm=extractor)
# return {"question": question, "answer": llm_chain.run(question)}
return extractor([("answer", query, _prompt(question), False)])[0][1]
@app.get("/rag")
def rag(domain: str, question: str):
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
print(db_exists)
# if db_exists:
embeddings = _load_embeddings_from_db(db_exists, domain)
# Create extractor instance
#extractor = Extractor(embeddings, "google/flan-t5-base")
#extractor = Extractor(embeddings, "TheBloke/Llama-2-7B-GGUF")
extractor = Extractor(embeddings, "google/flan-t5-xl")
# llm = HuggingFaceHub(
# repo_id="google/flan-t5-xxl",
# model_kwargs={"temperature": 1, "max_length": 1000000},
# )
# else:
answer = _search(question, extractor)
return {"question": question, "answer": answer}