Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import subprocess | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
# Constants | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
# Model initialization | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "DeepMount00/Lexora-Lite-3B" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
trust_remote_code=True, | |
) | |
model.eval() | |
# Custom CSS | |
CUSTOM_CSS = """ | |
/* Base styles */ | |
* { | |
margin: 0; | |
padding: 0; | |
box-sizing: border-box; | |
} | |
body { | |
font-family: 'Inter', sans-serif; | |
background-color: #f8fafc; | |
color: #1e293b; | |
} | |
/* Container styles */ | |
.container { | |
max-width: 1000px !important; | |
margin: auto !important; | |
padding: 2rem !important; | |
} | |
/* Header styles */ | |
.header-container { | |
background: linear-gradient(135deg, #1e3a8a 0%, #3b82f6 100%); | |
padding: 2.5rem; | |
border-radius: 1rem; | |
margin-bottom: 2rem; | |
color: white; | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); | |
} | |
.header-title { | |
font-size: 2.5rem; | |
font-weight: 700; | |
margin-bottom: 1.5rem; | |
text-align: center; | |
letter-spacing: -0.025em; | |
} | |
/* Model info styles */ | |
.model-info { | |
background: white; | |
padding: 1.75rem; | |
border-radius: 0.75rem; | |
margin-top: 1.5rem; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); | |
} | |
.model-info h2 { | |
font-size: 1.5rem; | |
font-weight: 600; | |
color: #1e3a8a; | |
margin-bottom: 1rem; | |
} | |
.model-info p { | |
color: #374151; | |
line-height: 1.6; | |
font-size: 1.1rem; | |
} | |
.model-info a { | |
color: #2563eb; | |
font-weight: 600; | |
text-decoration: none; | |
transition: color 0.2s; | |
} | |
.model-info a:hover { | |
color: #1d4ed8; | |
text-decoration: underline; | |
} | |
/* Chat container styles */ | |
.chat-container { | |
border: 1px solid #e5e7eb; | |
border-radius: 1rem; | |
background: white; | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
margin-bottom: 2rem; | |
} | |
/* Message styles */ | |
.message { | |
padding: 1.25rem; | |
margin: 0.75rem; | |
border-radius: 0.5rem; | |
font-size: 1.05rem; | |
line-height: 1.6; | |
} | |
.user-message { | |
background: #f3f4f6; | |
border-left: 4px solid #3b82f6; | |
} | |
.assistant-message { | |
background: #dbeafe; | |
border-left: 4px solid #1d4ed8; | |
} | |
/* Controls container styles */ | |
.controls-container { | |
background: #f8fafc; | |
padding: 1.75rem; | |
border-radius: 0.75rem; | |
margin-top: 1.5rem; | |
border: 1px solid #e5e7eb; | |
} | |
/* Slider styles */ | |
.slider-label { | |
font-weight: 600; | |
color: #374151; | |
margin-bottom: 0.5rem; | |
font-size: 1.05rem; | |
} | |
/* Button styles */ | |
.duplicate-button { | |
background: #2563eb !important; | |
color: white !important; | |
padding: 0.875rem 1.75rem !important; | |
border-radius: 0.5rem !important; | |
font-weight: 600 !important; | |
font-size: 1.05rem !important; | |
transition: all 0.2s !important; | |
border: none !important; | |
cursor: pointer !important; | |
display: inline-flex !important; | |
align-items: center !important; | |
justify-content: center !important; | |
text-align: center !important; | |
box-shadow: 0 2px 4px rgba(37, 99, 235, 0.2) !important; | |
} | |
.duplicate-button:hover { | |
background: #1d4ed8 !important; | |
transform: translateY(-1px) !important; | |
box-shadow: 0 4px 6px rgba(37, 99, 235, 0.3) !important; | |
} | |
/* Input field styles */ | |
.input-textarea { | |
border: 2px solid #e5e7eb !important; | |
border-radius: 0.5rem !important; | |
padding: 1rem !important; | |
font-size: 1.05rem !important; | |
transition: border-color 0.2s !important; | |
} | |
.input-textarea:focus { | |
border-color: #3b82f6 !important; | |
outline: none !important; | |
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important; | |
} | |
/* System message styles */ | |
.system-message { | |
background: #f8fafc; | |
border: 1px solid #e5e7eb; | |
border-radius: 0.5rem; | |
padding: 1rem; | |
margin-bottom: 1rem; | |
} | |
""" | |
# HTML Description | |
DESCRIPTION = ''' | |
<div class="header-container"> | |
<h1 class="header-title">Lexora-Lite-3B</h1> | |
<div class="model-info"> | |
<h2>About the Model</h2> | |
<p> | |
Welcome to the demonstration of <a href="https://huggingface.co/DeepMount00/Lexora-Lite-3B">Lexora-Lite-3B Chat ITA</a>, | |
currently the leading open-source large language model for the Italian language. This model represents the state-of-the-art | |
in Italian natural language processing, combining powerful language understanding with efficient performance. | |
</p> | |
<p style="margin-top: 1rem;"> | |
View its performance metrics and compare it with other models on the | |
<a href="https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard">official leaderboard</a>. | |
</p> | |
</div> | |
</div> | |
''' | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_message: str = "", | |
max_new_tokens: int = 2048, | |
temperature: float = 0.0001, | |
top_p: float = 1.0, | |
top_k: int = 50, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
conversation = [{"role": "system", "content": system_message}] | |
for user, assistant in chat_history: | |
conversation.extend( | |
[ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
def create_chat_interface(): | |
theme = gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
font=gr.themes.GoogleFont("Inter"), | |
radius_size=gr.themes.sizes.radius_sm, | |
) | |
with gr.Blocks(css=CUSTOM_CSS, theme=theme) as demo: | |
with gr.Column(elem_classes="container"): | |
gr.Markdown(DESCRIPTION) | |
with gr.Column(elem_classes="chat-container"): | |
additional_inputs = [ | |
gr.Textbox( | |
value="", | |
label="System Message", | |
elem_classes="system-message", | |
render=False, | |
), | |
] | |
# Create controls without context manager | |
controls = gr.Column(elem_classes="controls-container") | |
with controls: | |
additional_inputs.extend([ | |
gr.Slider( | |
label="Maximum New Tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
elem_classes="slider-label", | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=4.0, | |
step=0.1, | |
value=0.001, | |
elem_classes="slider-label", | |
), | |
gr.Slider( | |
label="Top-p (Nucleus Sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=1.0, | |
elem_classes="slider-label", | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
elem_classes="slider-label", | |
), | |
gr.Slider( | |
label="Repetition Penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
elem_classes="slider-label", | |
), | |
]) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=additional_inputs, | |
examples=[ | |
["Ciao! Come stai?"], | |
["Raccontami una breve storia."], | |
["Qual è il tuo piatto italiano preferito?"], | |
], | |
cache_examples=False, | |
) | |
gr.DuplicateButton( | |
value="Duplicate Space for Private Use", | |
elem_classes="duplicate-button", | |
elem_id="duplicate-button", | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_chat_interface() | |
demo.queue(max_size=20).launch() |