Spaces:
Runtime error
Runtime error
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import subprocess | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| DESCRIPTION = """\ | |
| # ITA ๐ฌ ๐ฎ๐น | |
| """ | |
| # Updated CSS to ensure full height and proper scrolling | |
| CUSTOM_CSS = """ | |
| .gradio-container { | |
| height: 100vh !important; | |
| max-height: 100vh !important; | |
| padding: 0 !important; | |
| background-color: #0f1117; | |
| } | |
| .contain { | |
| height: 100vh !important; | |
| max-height: 100vh !important; | |
| display: flex; | |
| flex-direction: column; | |
| } | |
| .main-container { | |
| flex-grow: 1; | |
| height: calc(100vh - 100px) !important; | |
| overflow: hidden !important; | |
| } | |
| .chat-container { | |
| height: 100% !important; | |
| overflow: hidden !important; | |
| display: flex; | |
| flex-direction: column; | |
| } | |
| .chat-messages { | |
| flex-grow: 1; | |
| overflow-y: auto !important; | |
| padding: 1rem; | |
| } | |
| .message-wrap { | |
| height: auto !important; | |
| max-height: none !important; | |
| } | |
| .message { | |
| padding: 1rem !important; | |
| margin: 0.5rem 0 !important; | |
| border-radius: 0.5rem !important; | |
| } | |
| .user-message { | |
| background-color: #2b2d31 !important; | |
| } | |
| .bot-message { | |
| background-color: #1e1f23 !important; | |
| } | |
| .examples-container { | |
| margin-top: auto; | |
| } | |
| """ | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model_id = "DeepMount00/LFM2-1.2B-Italian" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| attn_implementation="flash_attention_2", | |
| trust_remote_code=True, | |
| ) | |
| model.config.sliding_window = 4096 | |
| model.eval() | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_message: str = "Sei un assistente utile.", | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.2, | |
| top_p: float = 1.0, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.1, | |
| ) -> Iterator[str]: | |
| conversation = [{"role": "system", "content": system_message}] | |
| for user, assistant in chat_history: | |
| conversation.extend( | |
| [ | |
| {"role": "user", "content": user}, | |
| {"role": "assistant", "content": assistant}, | |
| ] | |
| ) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="Sei un assistente utile.", | |
| label="System message", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.2, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=1.0, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.1, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Ciao! Come stai?"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| with gr.Blocks(css=CUSTOM_CSS, fill_height=True, theme=gr.themes.Base()) as demo: | |
| with gr.Column(elem_classes="contain"): | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| with gr.Column(elem_classes="main-container"): | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |