Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
import torch | |
import re | |
from PIL import Image | |
import spaces # Add spaces import for Hugging Face Spaces | |
import os | |
import sys | |
import logging | |
from huggingface_hub import HfFolder | |
hf_token = os.getenv("API_KEY") | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# If the key is found, use it to authenticate | |
if hf_token: | |
HfFolder.save_token(hf_token) # This authenticates you for this session | |
else: | |
print("No HF_KEY found. Please make sure you've set up your Hugging Face API key as an environment variable.") | |
# Model information | |
MODEL_ID = "DeepMount00/Smol-OCR-preview" | |
OCR_INSTRUCTION = "Sei un assistente esperto di OCR, converti il testo in formato MD." | |
# Load processor and model | |
processor = AutoProcessor.from_pretrained(MODEL_ID, token=hf_token) | |
model = AutoModelForVision2Seq.from_pretrained( | |
MODEL_ID, | |
token=hf_token, | |
torch_dtype=torch.bfloat16, | |
# _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager", | |
).to("cuda") # Ensure model loads on CUDA for Spaces | |
# Add spaces.GPU decorator for GPU acceleration | |
def process_image(image, progress=gr.Progress()): | |
if image is None: | |
gr.Error("Please upload an image to process.") | |
return "Please upload an image to process." | |
progress(0, desc="Starting OCR processing...") | |
# Convert from Gradio's image format to PIL | |
if isinstance(image, str): | |
image = Image.open(image).convert("RGB") | |
progress(0.2, desc="Preparing image...") | |
# Create input messages - note that the instruction is included as part of the user message | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image"}, | |
{"type": "text", "text": OCR_INSTRUCTION} | |
] | |
}, | |
] | |
# Prepare inputs | |
progress(0.4, desc="Processing with model...") | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
inputs = inputs.to('cuda') | |
# Generate outputs | |
progress(0.6, desc="Generating text...") | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
**inputs, | |
max_new_tokens=4096, | |
temperature=0.1, | |
do_sample=True | |
) | |
# Decode outputs | |
progress(0.8, desc="Finalizing results...") | |
generated_text = processor.batch_decode( | |
generated_ids, | |
skip_special_tokens=True | |
)[0] | |
# Extract only the assistant's response | |
# Remove any "User:" and "Assistant:" prefixes if present | |
cleaned_text = generated_text | |
# Remove user prompt and "User:" prefix if present | |
user_pattern = r"User:.*?(?=Assistant:|$)" | |
cleaned_text = re.sub(user_pattern, "", cleaned_text, flags=re.DOTALL) | |
# Remove "Assistant:" prefix if present | |
assistant_pattern = r"Assistant:\s*" | |
cleaned_text = re.sub(assistant_pattern, "", cleaned_text) | |
# Clean up any extra whitespace | |
cleaned_text = cleaned_text.strip() | |
progress(1.0, desc="Done!") | |
return cleaned_text # Return only the cleaned text | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# OCR to Markdown Converter") | |
gr.Markdown(f"Upload Italian text images for instant Markdown conversion.Powered by {MODEL_ID} technology for exceptional accuracy with Italian language documents.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type="pil", label="Upload an image containing text") | |
submit_btn = gr.Button("Process Image", variant="primary") | |
with gr.Column(scale=1): | |
output_text = gr.Textbox(label="Raw Text", lines=15) | |
copy_btn = gr.Button("Select All Text", variant="secondary") | |
submit_btn.click( | |
fn=process_image, | |
inputs=input_image, | |
outputs=output_text, | |
show_progress="full", | |
queue=True # Enable queue for Spaces | |
) | |
def copy_to_clipboard(text): | |
return text | |
copy_btn.click( | |
fn=copy_to_clipboard, | |
inputs=output_text, | |
outputs=output_text | |
) | |
# Launch the app with default Spaces configuration (no need for local file paths) | |
demo.launch() |