Update DPTNet_eval/DPTNet_quant_sep.py
Browse files- DPTNet_eval/DPTNet_quant_sep.py +45 -18
DPTNet_eval/DPTNet_quant_sep.py
CHANGED
@@ -1,16 +1,25 @@
|
|
1 |
# DPTNet_quant_sep.py
|
|
|
2 |
import warnings
|
3 |
warnings.filterwarnings("ignore", message="Failed to initialize NumPy: _ARRAY_API not found")
|
|
|
4 |
import os
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import torchaudio
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
torchaudio.set_audio_backend("sox_io")
|
12 |
|
|
|
13 |
def get_conf():
|
|
|
14 |
conf_filterbank = {
|
15 |
'n_filters': 64,
|
16 |
'kernel_size': 16,
|
@@ -37,42 +46,60 @@ def get_conf():
|
|
37 |
def load_dpt_model():
|
38 |
print('Load Separation Model...')
|
39 |
|
40 |
-
#
|
41 |
speech_sep_token = os.getenv("SpeechSeparation")
|
42 |
if not speech_sep_token:
|
43 |
raise EnvironmentError("環境變數 SpeechSeparation 未設定!")
|
44 |
|
|
|
45 |
model_path = hf_hub_download(
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
50 |
|
51 |
# 取得模型參數
|
52 |
conf_filterbank, conf_masknet = get_conf()
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
# 套用量化設定
|
59 |
-
|
60 |
-
model
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
# 載入權重(忽略不匹配的 keys)
|
66 |
state_dict = torch.load(model_path, map_location="cpu")
|
67 |
-
|
68 |
-
filtered_state_dict = {
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return model
|
73 |
|
74 |
|
75 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
|
76 |
if model is None:
|
77 |
model = load_dpt_model()
|
78 |
|
|
|
1 |
# DPTNet_quant_sep.py
|
2 |
+
|
3 |
import warnings
|
4 |
warnings.filterwarnings("ignore", message="Failed to initialize NumPy: _ARRAY_API not found")
|
5 |
+
|
6 |
import os
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
import torchaudio
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
# 動態導入 asteroid_test 中的 DPTNet
|
13 |
+
try:
|
14 |
+
from . import asteroid_test
|
15 |
+
except ImportError as e:
|
16 |
+
raise ImportError("無法載入 asteroid_test 模組,請確認該模組與訓練時相同") from e
|
17 |
|
18 |
torchaudio.set_audio_backend("sox_io")
|
19 |
|
20 |
+
|
21 |
def get_conf():
|
22 |
+
"""取得模型參數設定"""
|
23 |
conf_filterbank = {
|
24 |
'n_filters': 64,
|
25 |
'kernel_size': 16,
|
|
|
46 |
def load_dpt_model():
|
47 |
print('Load Separation Model...')
|
48 |
|
49 |
+
# 從環境變數取得 Secret Token
|
50 |
speech_sep_token = os.getenv("SpeechSeparation")
|
51 |
if not speech_sep_token:
|
52 |
raise EnvironmentError("環境變數 SpeechSeparation 未設定!")
|
53 |
|
54 |
+
# 從 HF Hub 下載模型權重
|
55 |
model_path = hf_hub_download(
|
56 |
+
repo_id="DeepLearning101/speech-separation",
|
57 |
+
filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p",
|
58 |
+
token=speech_sep_token
|
59 |
+
)
|
60 |
|
61 |
# 取得模型參數
|
62 |
conf_filterbank, conf_masknet = get_conf()
|
63 |
|
64 |
+
# 建立模型架構(⚠️ 這邊要與訓練時完全一樣)
|
65 |
+
try:
|
66 |
+
model_class = getattr(asteroid_test, "DPTNet")
|
67 |
+
model = model_class(**conf_filterbank, **conf_masknet)
|
68 |
+
except Exception as e:
|
69 |
+
raise RuntimeError("模型結構錯誤:請確認 asteroid_test.py 是否與訓練時相同") from e
|
70 |
|
71 |
# 套用量化設定
|
72 |
+
try:
|
73 |
+
model = torch.quantization.quantize_dynamic(
|
74 |
+
model,
|
75 |
+
{torch.nn.LSTM, torch.nn.Linear},
|
76 |
+
dtype=torch.qint8
|
77 |
+
)
|
78 |
+
except Exception as e:
|
79 |
+
print("量化設定失敗:", e)
|
80 |
|
81 |
# 載入權重(忽略不匹配的 keys)
|
82 |
state_dict = torch.load(model_path, map_location="cpu")
|
83 |
+
own_state = model.state_dict()
|
84 |
+
filtered_state_dict = {
|
85 |
+
k: v for k, v in state_dict.items() if k in own_state and v.shape == own_state[k].shape
|
86 |
+
}
|
87 |
+
|
88 |
+
# 忽略找不到的 keys,也不強制要求全部 match
|
89 |
+
missing_keys, unexpected_keys = model.load_state_dict(filtered_state_dict, strict=False)
|
90 |
|
91 |
+
# 印出警告訊息方便除錯
|
92 |
+
if missing_keys:
|
93 |
+
print("⚠️ Missing keys:", missing_keys)
|
94 |
+
if unexpected_keys:
|
95 |
+
print("ℹ️ Unexpected keys:", unexpected_keys)
|
96 |
+
|
97 |
+
model.eval()
|
98 |
return model
|
99 |
|
100 |
|
101 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
102 |
+
"""進行語音分離處理"""
|
103 |
if model is None:
|
104 |
model = load_dpt_model()
|
105 |
|