Update DPTNet_eval/DPTNet_quant_sep.py
Browse files- DPTNet_eval/DPTNet_quant_sep.py +24 -26
DPTNet_eval/DPTNet_quant_sep.py
CHANGED
@@ -4,6 +4,9 @@ import numpy as np
|
|
4 |
import torchaudio
|
5 |
import yaml
|
6 |
from . import asteroid_test
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def get_conf():
|
@@ -32,19 +35,35 @@ def get_conf():
|
|
32 |
|
33 |
def load_dpt_model():
|
34 |
print('Load Separation Model...')
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
conf_filterbank, conf_masknet = get_conf()
|
37 |
-
|
38 |
-
model =
|
39 |
model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8)
|
|
|
40 |
state_dict = torch.load(model_path, map_location="cpu")
|
41 |
model.load_state_dict(state_dict)
|
42 |
model.eval()
|
43 |
return model
|
44 |
|
|
|
45 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
46 |
if model is None:
|
47 |
-
model =
|
48 |
|
49 |
x, sr = torchaudio.load(wav_path)
|
50 |
x = x.cpu()
|
@@ -73,28 +92,7 @@ def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
73 |
else:
|
74 |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
75 |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
76 |
-
|
77 |
-
# def dpt_sep_process(wav_path, model=None, outfilename=None):
|
78 |
-
# if model == None:
|
79 |
-
# model = load_model()
|
80 |
-
# x, sr = torchaudio.load(wav_path)
|
81 |
-
# x = x.cpu()
|
82 |
-
# with torch.no_grad():
|
83 |
-
# est_sources = model(x)
|
84 |
-
|
85 |
-
# est_sources_np = est_sources.squeeze(0)
|
86 |
-
|
87 |
-
# sep_1, sep_2 = est_sources_np
|
88 |
-
# sep_1 = sep_1 * x[0].abs().max().item() / sep_1.abs().max().item()
|
89 |
-
# sep_2 = sep_2 * x[0].abs().max().item() / sep_2.abs().max().item()
|
90 |
-
|
91 |
-
# if outfilename != None:
|
92 |
-
# torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr)
|
93 |
-
# torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr)
|
94 |
-
# torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr)
|
95 |
-
# else:
|
96 |
-
# torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
97 |
-
# torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
98 |
|
99 |
if __name__ == '__main__':
|
100 |
print("This module should be used via Flask or Gradio.")
|
|
|
4 |
import torchaudio
|
5 |
import yaml
|
6 |
from . import asteroid_test
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
torchaudio.set_audio_backend("sox_io")
|
10 |
|
11 |
|
12 |
def get_conf():
|
|
|
35 |
|
36 |
def load_dpt_model():
|
37 |
print('Load Separation Model...')
|
38 |
+
|
39 |
+
# 👇 從環境變數取得 HF Token
|
40 |
+
from huggingface_hub import hf_hub_download
|
41 |
+
speech_sep_token = os.getenv("SpeechSeparation")
|
42 |
+
if not speech_sep_token:
|
43 |
+
raise EnvironmentError("環境變數 SpeechSeparation 未設定!")
|
44 |
+
|
45 |
+
# 👇 從 Hugging Face Hub 下載模型權重
|
46 |
+
model_path = hf_hub_download(
|
47 |
+
repo_id="DeepLearning101/speech-separation", # 替換成你自己的 repo 名稱
|
48 |
+
filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p",
|
49 |
+
token=speech_sep_token
|
50 |
+
)
|
51 |
+
|
52 |
+
# 👇 原本邏輯完全不變
|
53 |
conf_filterbank, conf_masknet = get_conf()
|
54 |
+
model_class = getattr(asteroid_test, "DPTNet")
|
55 |
+
model = model_class(**conf_filterbank, **conf_masknet)
|
56 |
model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8)
|
57 |
+
|
58 |
state_dict = torch.load(model_path, map_location="cpu")
|
59 |
model.load_state_dict(state_dict)
|
60 |
model.eval()
|
61 |
return model
|
62 |
|
63 |
+
|
64 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
65 |
if model is None:
|
66 |
+
model = load_dpt_model()
|
67 |
|
68 |
x, sr = torchaudio.load(wav_path)
|
69 |
x = x.cpu()
|
|
|
92 |
else:
|
93 |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
94 |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
95 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
if __name__ == '__main__':
|
98 |
print("This module should be used via Flask or Gradio.")
|