|
import os |
|
import gradio as gr |
|
import aiohttp |
|
import asyncio |
|
import json |
|
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk |
|
from huggingface_hub import HfApi, HfFolder |
|
|
|
|
|
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") |
|
LLM_API = os.environ.get("LLM_API") |
|
LLM_URL = os.environ.get("LLM_URL") |
|
USER_ID = "HuggingFace Space" |
|
DATASET_NAME = os.environ.get("DATASET_NAME") |
|
|
|
|
|
if HF_API_TOKEN is None: |
|
raise ValueError("HF_API_TOKEN 環境變量未設置。請在 Hugging Face Space 的設置中添加該環境變量。") |
|
|
|
|
|
HfFolder.save_token(HF_API_TOKEN) |
|
|
|
|
|
features = { |
|
"user_input": "string", |
|
"response": "string", |
|
"feedback_type": "string", |
|
"improvement": "string" |
|
} |
|
|
|
|
|
try: |
|
dataset = load_dataset(DATASET_NAME) |
|
except: |
|
dataset = DatasetDict({ |
|
"feedback": Dataset.from_dict({ |
|
"user_input": [], |
|
"response": [], |
|
"feedback_type": [], |
|
"improvement": [] |
|
}) |
|
}) |
|
|
|
async def send_chat_message(user_input): |
|
payload = { |
|
"inputs": {}, |
|
"query": user_input, |
|
"response_mode": "streaming", |
|
"conversation_id": "", |
|
"user": USER_ID, |
|
} |
|
print("Sending chat message payload:", payload) |
|
|
|
async with aiohttp.ClientSession() as session: |
|
try: |
|
async with session.post( |
|
url=f"{LLM_URL}/chat-messages", |
|
headers={"Authorization": f"Bearer {LLM_API}"}, |
|
json=payload, |
|
timeout=aiohttp.ClientTimeout(total=60) |
|
) as response: |
|
if response.status != 200: |
|
print(f"Error: {response.status}") |
|
return f"Error: {response.status}" |
|
|
|
full_response = [] |
|
async for line in response.content: |
|
line = line.decode('utf-8').strip() |
|
if not line: |
|
continue |
|
if "data: " not in line: |
|
continue |
|
try: |
|
data = json.loads(line.split("data: ")[1]) |
|
if "answer" in data: |
|
full_response.append(data["answer"]) |
|
except (IndexError, json.JSONDecodeError) as e: |
|
print(f"Error parsing line: {line}, error: {e}") |
|
continue |
|
|
|
if full_response: |
|
return ''.join(full_response).strip() |
|
else: |
|
return "Error: No response found in the response" |
|
except Exception as e: |
|
print(f"Exception: {e}") |
|
return f"Exception: {e}" |
|
|
|
async def handle_input(user_input): |
|
print(f"Handling input: {user_input}") |
|
chat_response = await send_chat_message(user_input) |
|
print("Chat response:", chat_response) |
|
return chat_response |
|
|
|
def run_sync(user_input): |
|
print(f"Running sync with input: {user_input}") |
|
return asyncio.run(handle_input(user_input)) |
|
|
|
def save_feedback(user_input, response, feedback_type, improvement): |
|
feedback = { |
|
"user_input": user_input, |
|
"response": response, |
|
"feedback_type": feedback_type, |
|
"improvement": improvement |
|
} |
|
print(f"Saving feedback: {feedback}") |
|
|
|
new_data = { |
|
"user_input": [user_input], |
|
"response": [response], |
|
"feedback_type": [feedback_type], |
|
"improvement": [improvement] |
|
} |
|
global dataset |
|
dataset["feedback"] = dataset["feedback"].add_item(new_data) |
|
dataset.push_to_hub(DATASET_NAME) |
|
|
|
def handle_feedback(response, feedback_type, improvement): |
|
|
|
global last_user_input |
|
save_feedback(last_user_input, response, feedback_type, improvement) |
|
return "感謝您的反饋!" |
|
|
|
def handle_user_input(user_input): |
|
print(f"User input: {user_input}") |
|
global last_user_input |
|
last_user_input = user_input |
|
return run_sync(user_input) |
|
|
|
|
|
def show_feedback(): |
|
try: |
|
feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records") |
|
return feedbacks |
|
except Exception as e: |
|
return f"Error: {e}" |
|
|
|
TITLE = """<h1 align="center">大型語言模型 (LLM) 聊天界面 💬</h1>""" |
|
|
|
|
|
examples = [ |
|
["AlCoCrFeNi HEA coating 可用怎樣的實驗方法做到 ?"], |
|
["請問high entropy nitride coatings的形成,主要可透過那些元素來讓這個材料形成熱穩定?"] |
|
] |
|
|
|
with gr.Blocks() as iface: |
|
gr.HTML(TITLE) |
|
with gr.Row(): |
|
chatbot = gr.Chatbot() |
|
|
|
with gr.Row(): |
|
user_input = gr.Textbox(label='輸入您的問題', placeholder="在此輸入問題...") |
|
submit_button = gr.Button("送出") |
|
|
|
gr.Examples(examples=examples, inputs=user_input) |
|
|
|
with gr.Row(): |
|
like_button = gr.Button("👍") |
|
dislike_button = gr.Button("👎") |
|
improvement_input = gr.Textbox(label='請輸入改進建議', placeholder='請輸入如何改進模型回應的建議') |
|
|
|
with gr.Row(): |
|
feedback_output = gr.Textbox(label='反饋結果', interactive=False) |
|
with gr.Row(): |
|
show_feedback_button = gr.Button("查看所有反饋") |
|
feedback_display = gr.JSON(label='所有反饋') |
|
|
|
def chat(user_input, history): |
|
response = handle_user_input(user_input) |
|
history.append((user_input, response)) |
|
return history, history |
|
|
|
submit_button.click(fn=chat, inputs=[user_input, chatbot], outputs=[chatbot, chatbot]) |
|
|
|
like_button.click( |
|
fn=lambda response, improvement: handle_feedback(response, "like", improvement), |
|
inputs=[chatbot, improvement_input], |
|
outputs=feedback_output |
|
) |
|
|
|
dislike_button.click( |
|
fn=lambda response, improvement: handle_feedback(response, "dislike", improvement), |
|
inputs=[chatbot, improvement_input], |
|
outputs=feedback_output |
|
) |
|
|
|
show_feedback_button.click(fn=show_feedback, outputs=feedback_display) |
|
|
|
iface.launch() |
|
|