DeepLearning101's picture
Update app.py
471c532 verified
raw
history blame
6.3 kB
import os
import gradio as gr
import aiohttp
import asyncio
import json
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
from huggingface_hub import HfApi, HfFolder
# 從環境變量中獲取 Hugging Face API 令牌和其他配置
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")
USER_ID = "HuggingFace Space"
DATASET_NAME = os.environ.get("DATASET_NAME")
# 確保令牌不為空
if HF_API_TOKEN is None:
raise ValueError("HF_API_TOKEN 環境變量未設置。請在 Hugging Face Space 的設置中添加該環境變量。")
# 設置 Hugging Face API 令牌
HfFolder.save_token(HF_API_TOKEN)
# 定義數據集特徵
features = {
"user_input": "string",
"response": "string",
"feedback_type": "string",
"improvement": "string"
}
# 加載或創建數據集
try:
dataset = load_dataset(DATASET_NAME)
except:
dataset = DatasetDict({
"feedback": Dataset.from_dict({
"user_input": [],
"response": [],
"feedback_type": [],
"improvement": []
})
})
async def send_chat_message(user_input):
payload = {
"inputs": {},
"query": user_input,
"response_mode": "streaming",
"conversation_id": "",
"user": USER_ID,
}
print("Sending chat message payload:", payload)
async with aiohttp.ClientSession() as session:
try:
async with session.post(
url=f"{LLM_URL}/chat-messages",
headers={"Authorization": f"Bearer {LLM_API}"},
json=payload,
timeout=aiohttp.ClientTimeout(total=60)
) as response:
if response.status != 200:
print(f"Error: {response.status}")
return f"Error: {response.status}"
full_response = []
async for line in response.content:
line = line.decode('utf-8').strip()
if not line:
continue
if "data: " not in line:
continue
try:
data = json.loads(line.split("data: ")[1])
if "answer" in data:
full_response.append(data["answer"])
except (IndexError, json.JSONDecodeError) as e:
print(f"Error parsing line: {line}, error: {e}")
continue
if full_response:
return ''.join(full_response).strip()
else:
return "Error: No response found in the response"
except Exception as e:
print(f"Exception: {e}")
return f"Exception: {e}"
async def handle_input(user_input):
print(f"Handling input: {user_input}")
chat_response = await send_chat_message(user_input)
print("Chat response:", chat_response)
return chat_response
def run_sync(user_input):
print(f"Running sync with input: {user_input}")
return asyncio.run(handle_input(user_input))
def save_feedback(user_input, response, feedback_type, improvement):
feedback = {
"user_input": user_input,
"response": response,
"feedback_type": feedback_type,
"improvement": improvement
}
print(f"Saving feedback: {feedback}")
# Append to the dataset
new_data = {
"user_input": [user_input],
"response": [response],
"feedback_type": [feedback_type],
"improvement": [improvement]
}
global dataset
dataset["feedback"] = dataset["feedback"].add_item(new_data)
dataset.push_to_hub(DATASET_NAME)
def handle_feedback(response, feedback_type, improvement):
# 獲取最新的用戶輸入(假設用戶輸入保存在全局變量中)
global last_user_input
save_feedback(last_user_input, response, feedback_type, improvement)
return "感謝您的反饋!"
def handle_user_input(user_input):
print(f"User input: {user_input}")
global last_user_input
last_user_input = user_input # 保存最新的用戶輸入
return run_sync(user_input)
# 讀取並顯示反饋內容的函數
def show_feedback():
try:
feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records")
return feedbacks
except Exception as e:
return f"Error: {e}"
TITLE = """<h1 align="center">大型語言模型 (LLM) 聊天界面 💬</h1>"""
# 添加示例
examples = [
["AlCoCrFeNi HEA coating 可用怎樣的實驗方法做到 ?"],
["請問high entropy nitride coatings的形成,主要可透過那些元素來讓這個材料形成熱穩定?"]
]
with gr.Blocks() as iface:
gr.HTML(TITLE)
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
user_input = gr.Textbox(label='輸入您的問題', placeholder="在此輸入問題...")
submit_button = gr.Button("送出")
gr.Examples(examples=examples, inputs=user_input)
with gr.Row():
like_button = gr.Button("👍")
dislike_button = gr.Button("👎")
improvement_input = gr.Textbox(label='請輸入改進建議', placeholder='請輸入如何改進模型回應的建議')
with gr.Row():
feedback_output = gr.Textbox(label='反饋結果', interactive=False)
with gr.Row():
show_feedback_button = gr.Button("查看所有反饋")
feedback_display = gr.JSON(label='所有反饋')
def chat(user_input, history):
response = handle_user_input(user_input)
history.append((user_input, response))
return history, history
submit_button.click(fn=chat, inputs=[user_input, chatbot], outputs=[chatbot, chatbot])
like_button.click(
fn=lambda response, improvement: handle_feedback(response, "like", improvement),
inputs=[chatbot, improvement_input],
outputs=feedback_output
)
dislike_button.click(
fn=lambda response, improvement: handle_feedback(response, "dislike", improvement),
inputs=[chatbot, improvement_input],
outputs=feedback_output
)
show_feedback_button.click(fn=show_feedback, outputs=feedback_display)
iface.launch()