|
|
|
""" |
|
@author:XuMing(xuming624@qq.com) |
|
@description: Re-train by TWMAN |
|
""" |
|
import hashlib |
|
import os |
|
import ssl |
|
|
|
import gradio as gr |
|
import torch |
|
from loguru import logger |
|
|
|
ssl._create_default_https_context = ssl._create_unverified_context |
|
import nltk |
|
|
|
nltk.download('cmudict') |
|
from parrots import TextToSpeech |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
logger.info(f"device: {device}") |
|
half = True if device == "cuda" else False |
|
|
|
m = TextToSpeech(speaker_model_path="DeepLearning101/GPT-SoVITS_TWMAN", speaker_name="TWMAN", device=device, half=half) |
|
m.predict(text="台灣南波萬。Taiwan Number One.", text_language="auto", output_path="output_audio.wav") |
|
assert os.path.exists("output_audio.wav"), "output_audio.wav not found" |
|
|
|
|
|
def get_text_hash(text: str): |
|
return hashlib.md5(text.encode('utf-8')).hexdigest() |
|
|
|
|
|
def do_tts_wav_predict(text: str, output_path: str = None): |
|
if output_path is None: |
|
output_path = f"output_audio_{get_text_hash(text)}.wav" |
|
if not os.path.exists(output_path): |
|
m.predict(text, text_language="auto", output_path=output_path) |
|
return output_path |
|
|
|
|
|
with gr.Blocks(title="TTS WebUI") as app: |
|
gr.Markdown(value=""" |
|
# <center>線上語音合成;speaker:TWMAN\n |
|
|
|
### <center>語音處理:https://www.twman.org/AI/ASR\n |
|
### <center>那些語音處理 (Speech Processing) 踩的坑 https://blog.twman.org/2021/04/ASR.html\n |
|
### <center>parrots專案:https://github.com/shibing624/parrots\n |
|
### <center>使用模型:https://github.com/RVC-Boss/GPT-SoVITS\n |
|
### <center>使用本模型請嚴格遵守法規! 發布二創作品請標註本專案作者及連結、作品使用GPT-SoVITS AI生成! \n |
|
### <center>⚠️在線端不穩定且生成速度較慢,建議使用parrots本地推理! \n |
|
""") |
|
|
|
with gr.Group(): |
|
gr.Markdown(value="*請在這裡輸入要進行語音合成的文字") |
|
with gr.Row(): |
|
text = gr.Textbox(label="想語音合成的文字(100字以内)或使用預設", value="床前明月光,疑是地上霜。舉頭望明月,低頭思故鄉。", placeholder="請輸入您想要的文字", lines=3) |
|
inference_button = gr.Button("語音合成", variant="primary") |
|
output = gr.Audio(label="合成的語音") |
|
inference_button.click( |
|
do_tts_wav_predict, |
|
[text], |
|
[output], |
|
) |
|
|
|
app.queue(max_size=10) |
|
app.launch(inbrowser=True) |