Spaces:
Runtime error
Runtime error
add files
Browse files- app.py +53 -0
- configs/modnet/modnet_hrnet_w18.yml +5 -0
- configs/modnet/modnet_mobilenetv2.yml +49 -0
- configs/modnet/modnet_resnet50_vd.yml +5 -0
- images/armchair.jpg +0 -0
- images/cat.jpg +0 -0
- images/plant.jpg +0 -0
- matting/__pycache__/transforms.cpython-37.pyc +0 -0
- matting/__pycache__/utils.cpython-37.pyc +0 -0
- matting/core/__init__.py +1 -0
- matting/core/__pycache__/__init__.cpython-37.pyc +0 -0
- matting/core/__pycache__/predict.cpython-37.pyc +0 -0
- matting/core/predict.py +163 -0
- matting/dataset/__init__.py +15 -0
- matting/dataset/__pycache__/__init__.cpython-37.pyc +0 -0
- matting/dataset/__pycache__/matting_dataset.cpython-37.pyc +0 -0
- matting/dataset/matting_dataset.py +229 -0
- matting/model/__init__.py +21 -0
- matting/model/__pycache__/__init__.cpython-37.pyc +0 -0
- matting/model/__pycache__/dim.cpython-37.pyc +0 -0
- matting/model/__pycache__/hrnet.cpython-37.pyc +0 -0
- matting/model/__pycache__/loss.cpython-37.pyc +0 -0
- matting/model/__pycache__/mobilenet_v2.cpython-37.pyc +0 -0
- matting/model/__pycache__/modnet.cpython-37.pyc +0 -0
- matting/model/__pycache__/resnet_vd.cpython-37.pyc +0 -0
- matting/model/__pycache__/vgg.cpython-37.pyc +0 -0
- matting/model/dim.py +203 -0
- matting/model/hrnet.py +835 -0
- matting/model/loss.py +51 -0
- matting/model/mobilenet_v2.py +241 -0
- matting/model/modnet.py +481 -0
- matting/model/resnet_vd.py +368 -0
- matting/model/vgg.py +166 -0
- matting/transforms.py +530 -0
- matting/utils.py +70 -0
- requirements.txt +2 -0
- train.txt +0 -0
- val.txt +0 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import paddle
|
5 |
+
from paddleseg.cvlibs import Config
|
6 |
+
|
7 |
+
from matting.core import predict
|
8 |
+
from matting.model import *
|
9 |
+
from matting.dataset import MattingDataset
|
10 |
+
|
11 |
+
|
12 |
+
def download_file(http_address, file_name):
|
13 |
+
r = requests.get(http_address, allow_redirects=True)
|
14 |
+
open(file_name, 'wb').write(r.content)
|
15 |
+
|
16 |
+
|
17 |
+
cfgs = ['configs/modnet/modnet_mobilenetv2.yml', 'configs/modnet/modnet_resnet50_vd.yml', 'configs/modnet/modnet_hrnet_w18.yml']
|
18 |
+
|
19 |
+
download_file('https://paddleseg.bj.bcebos.com/matting/models/modnet-mobilenetv2.pdparams', 'modnet-mobilenetv2.pdparams')
|
20 |
+
download_file('https://paddleseg.bj.bcebos.com/matting/models/modnet-resnet50_vd.pdparams', 'modnet-resnet50_vd.pdparams')
|
21 |
+
download_file('https://paddleseg.bj.bcebos.com/matting/models/modnet-hrnet_w18.pdparams', 'modnet-hrnet_w18.pdparams')
|
22 |
+
models_paths = ['modnet-mobilenetv2.pdparams', 'modnet-resnet50_vd.pdparams', 'modnet-hrnet_w18.pdparams']
|
23 |
+
|
24 |
+
|
25 |
+
def inference(image, chosen_model):
|
26 |
+
paddle.set_device('cpu')
|
27 |
+
cfg = Config(cfgs[chosen_model])
|
28 |
+
|
29 |
+
val_dataset = cfg.val_dataset
|
30 |
+
model = cfg.model
|
31 |
+
img_transforms = val_dataset.transforms
|
32 |
+
|
33 |
+
alpha_pred = predict(model,
|
34 |
+
model_path=models_paths[chosen_model],
|
35 |
+
transforms=img_transforms,
|
36 |
+
image_list=[image])
|
37 |
+
|
38 |
+
return alpha_pred
|
39 |
+
|
40 |
+
|
41 |
+
inputs = [gr.inputs.Image(label='Input Image'),
|
42 |
+
gr.inputs.Radio(['MobileNetV2', 'ResNet50_vd', 'HRNet_W18'], label='Model', type='index')]
|
43 |
+
|
44 |
+
|
45 |
+
gr.Interface(
|
46 |
+
inference,
|
47 |
+
inputs,
|
48 |
+
gr.outputs.Image(label='Output'),
|
49 |
+
title='PaddleSeg - Matting',
|
50 |
+
examples=[['images/armchair.jpg', 'MobileNetV2'],
|
51 |
+
['images/cat.jpg', 'ResNet50_vd'],
|
52 |
+
['images/plant.jpg', 'HRNet_W18']]
|
53 |
+
).launch()
|
configs/modnet/modnet_hrnet_w18.yml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: modnet_mobilenetv2.yml
|
2 |
+
model:
|
3 |
+
backbone:
|
4 |
+
type: HRNet_W18
|
5 |
+
pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz
|
configs/modnet/modnet_mobilenetv2.yml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 16
|
2 |
+
iters: 100000
|
3 |
+
|
4 |
+
train_dataset:
|
5 |
+
type: MattingDataset
|
6 |
+
dataset_root: .
|
7 |
+
train_file: train.txt
|
8 |
+
transforms:
|
9 |
+
# - type: LoadImages
|
10 |
+
- type: ResizeByShort
|
11 |
+
short_size: 512
|
12 |
+
- type: RandomCrop
|
13 |
+
crop_size: [512, 512]
|
14 |
+
- type: RandomDistort
|
15 |
+
- type: RandomBlur
|
16 |
+
- type: RandomHorizontalFlip
|
17 |
+
- type: Normalize
|
18 |
+
mode: train
|
19 |
+
|
20 |
+
val_dataset:
|
21 |
+
type: MattingDataset
|
22 |
+
dataset_root: .
|
23 |
+
val_file: val.txt
|
24 |
+
transforms:
|
25 |
+
# - type: LoadImages
|
26 |
+
- type: ResizeByShort
|
27 |
+
short_size: 512
|
28 |
+
- type: ResizeToIntMult
|
29 |
+
mult_int: 32
|
30 |
+
- type: Normalize
|
31 |
+
mode: val
|
32 |
+
get_trimap: False
|
33 |
+
|
34 |
+
model:
|
35 |
+
type: MODNet
|
36 |
+
backbone:
|
37 |
+
type: MobileNetV2
|
38 |
+
pretrained: https://paddleseg.bj.bcebos.com/matting/models/MobileNetV2_pretrained/model.pdparams
|
39 |
+
pretrained: Null
|
40 |
+
|
41 |
+
optimizer:
|
42 |
+
type: sgd
|
43 |
+
momentum: 0.9
|
44 |
+
weight_decay: 4.0e-5
|
45 |
+
|
46 |
+
lr_scheduler:
|
47 |
+
type: PiecewiseDecay
|
48 |
+
boundaries: [40000, 80000]
|
49 |
+
values: [0.02, 0.002, 0.0002]
|
configs/modnet/modnet_resnet50_vd.yml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: modnet_mobilenetv2.yml
|
2 |
+
model:
|
3 |
+
backbone:
|
4 |
+
type: ResNet50_vd
|
5 |
+
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz
|
images/armchair.jpg
ADDED
images/cat.jpg
ADDED
images/plant.jpg
ADDED
matting/__pycache__/transforms.cpython-37.pyc
ADDED
Binary file (15.8 kB). View file
|
|
matting/__pycache__/utils.cpython-37.pyc
ADDED
Binary file (1.66 kB). View file
|
|
matting/core/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .predict import predict
|
matting/core/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (196 Bytes). View file
|
|
matting/core/__pycache__/predict.cpython-37.pyc
ADDED
Binary file (4.07 kB). View file
|
|
matting/core/predict.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import math
|
17 |
+
import time
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
import numpy as np
|
21 |
+
import paddle
|
22 |
+
import paddle.nn.functional as F
|
23 |
+
from paddleseg import utils
|
24 |
+
from paddleseg.core import infer
|
25 |
+
from paddleseg.utils import logger, progbar, TimeAverager
|
26 |
+
|
27 |
+
from matting.utils import mkdir
|
28 |
+
|
29 |
+
|
30 |
+
def partition_list(arr, m):
|
31 |
+
"""split the list 'arr' into m pieces"""
|
32 |
+
n = int(math.ceil(len(arr) / float(m)))
|
33 |
+
return [arr[i:i + n] for i in range(0, len(arr), n)]
|
34 |
+
|
35 |
+
|
36 |
+
def save_alpha_pred(alpha, path, trimap=None):
|
37 |
+
"""
|
38 |
+
The value of alpha is range [0, 1], shape should be [h,w]
|
39 |
+
"""
|
40 |
+
dirname = os.path.dirname(path)
|
41 |
+
if not os.path.exists(dirname):
|
42 |
+
os.makedirs(dirname)
|
43 |
+
|
44 |
+
trimap = cv2.imread(trimap, 0)
|
45 |
+
alpha[trimap == 0] = 0
|
46 |
+
alpha[trimap == 255] = 255
|
47 |
+
alpha = (alpha).astype('uint8')
|
48 |
+
cv2.imwrite(path, alpha)
|
49 |
+
|
50 |
+
|
51 |
+
def reverse_transform(alpha, trans_info):
|
52 |
+
"""recover pred to origin shape"""
|
53 |
+
for item in trans_info[::-1]:
|
54 |
+
if item[0] == 'resize':
|
55 |
+
h, w = item[1][0], item[1][1]
|
56 |
+
alpha = F.interpolate(alpha, [h, w], mode='bilinear')
|
57 |
+
elif item[0] == 'padding':
|
58 |
+
h, w = item[1][0], item[1][1]
|
59 |
+
alpha = alpha[:, :, 0:h, 0:w]
|
60 |
+
else:
|
61 |
+
raise Exception("Unexpected info '{}' in im_info".format(item[0]))
|
62 |
+
return alpha
|
63 |
+
|
64 |
+
|
65 |
+
def preprocess(img, transforms, trimap=None):
|
66 |
+
data = {}
|
67 |
+
data['img'] = img
|
68 |
+
if trimap is not None:
|
69 |
+
data['trimap'] = trimap
|
70 |
+
data['gt_fields'] = ['trimap']
|
71 |
+
data['trans_info'] = []
|
72 |
+
data = transforms(data)
|
73 |
+
data['img'] = paddle.to_tensor(data['img'])
|
74 |
+
data['img'] = data['img'].unsqueeze(0)
|
75 |
+
if trimap is not None:
|
76 |
+
data['trimap'] = paddle.to_tensor(data['trimap'])
|
77 |
+
data['trimap'] = data['trimap'].unsqueeze((0, 1))
|
78 |
+
|
79 |
+
return data
|
80 |
+
|
81 |
+
|
82 |
+
def predict(model,
|
83 |
+
model_path,
|
84 |
+
transforms,
|
85 |
+
image_list,
|
86 |
+
image_dir=None,
|
87 |
+
trimap_list=None,
|
88 |
+
save_dir='output'):
|
89 |
+
"""
|
90 |
+
predict and visualize the image_list.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
model (nn.Layer): Used to predict for input image.
|
94 |
+
model_path (str): The path of pretrained model.
|
95 |
+
transforms (transforms.Compose): Preprocess for input image.
|
96 |
+
image_list (list): A list of image path to be predicted.
|
97 |
+
image_dir (str, optional): The root directory of the images predicted. Default: None.
|
98 |
+
trimap_list (list, optional): A list of trimap of image_list. Default: None.
|
99 |
+
save_dir (str, optional): The directory to save the visualized results. Default: 'output'.
|
100 |
+
"""
|
101 |
+
utils.utils.load_entire_model(model, model_path)
|
102 |
+
model.eval()
|
103 |
+
nranks = paddle.distributed.get_world_size()
|
104 |
+
local_rank = paddle.distributed.get_rank()
|
105 |
+
if nranks > 1:
|
106 |
+
img_lists = partition_list(image_list, nranks)
|
107 |
+
trimap_lists = partition_list(
|
108 |
+
trimap_list, nranks) if trimap_list is not None else None
|
109 |
+
else:
|
110 |
+
img_lists = [image_list]
|
111 |
+
trimap_lists = [trimap_list] if trimap_list is not None else None
|
112 |
+
|
113 |
+
logger.info("Start to predict...")
|
114 |
+
progbar_pred = progbar.Progbar(target=len(img_lists[0]), verbose=1)
|
115 |
+
preprocess_cost_averager = TimeAverager()
|
116 |
+
infer_cost_averager = TimeAverager()
|
117 |
+
postprocess_cost_averager = TimeAverager()
|
118 |
+
batch_start = time.time()
|
119 |
+
with paddle.no_grad():
|
120 |
+
for i, im_path in enumerate(img_lists[local_rank]):
|
121 |
+
preprocess_start = time.time()
|
122 |
+
trimap = trimap_lists[local_rank][
|
123 |
+
i] if trimap_list is not None else None
|
124 |
+
data = preprocess(img=im_path, transforms=transforms, trimap=trimap)
|
125 |
+
preprocess_cost_averager.record(time.time() - preprocess_start)
|
126 |
+
|
127 |
+
infer_start = time.time()
|
128 |
+
alpha_pred = model(data)
|
129 |
+
infer_cost_averager.record(time.time() - infer_start)
|
130 |
+
|
131 |
+
postprocess_start = time.time()
|
132 |
+
alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
|
133 |
+
alpha_pred = (alpha_pred.numpy()).squeeze()
|
134 |
+
alpha_pred = (alpha_pred * 255).astype('uint8')
|
135 |
+
|
136 |
+
# get the saved name
|
137 |
+
# if image_dir is not None:
|
138 |
+
# im_file = im_path.replace(image_dir, '')
|
139 |
+
# else:
|
140 |
+
# im_file = os.path.basename(im_path)
|
141 |
+
# if im_file[0] == '/' or im_file[0] == '\\':
|
142 |
+
# im_file = im_file[1:]
|
143 |
+
|
144 |
+
# save_path = os.path.join(save_dir, im_file)
|
145 |
+
# mkdir(save_path)
|
146 |
+
# save_alpha_pred(alpha_pred, save_path, trimap=trimap)
|
147 |
+
|
148 |
+
postprocess_cost_averager.record(time.time() - postprocess_start)
|
149 |
+
|
150 |
+
preprocess_cost = preprocess_cost_averager.get_average()
|
151 |
+
infer_cost = infer_cost_averager.get_average()
|
152 |
+
postprocess_cost = postprocess_cost_averager.get_average()
|
153 |
+
if local_rank == 0:
|
154 |
+
progbar_pred.update(i + 1,
|
155 |
+
[('preprocess_cost', preprocess_cost),
|
156 |
+
('infer_cost cost', infer_cost),
|
157 |
+
('postprocess_cost', postprocess_cost)])
|
158 |
+
|
159 |
+
preprocess_cost_averager.reset()
|
160 |
+
infer_cost_averager.reset()
|
161 |
+
postprocess_cost_averager.reset()
|
162 |
+
|
163 |
+
return alpha_pred
|
matting/dataset/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .matting_dataset import MattingDataset
|
matting/dataset/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (235 Bytes). View file
|
|
matting/dataset/__pycache__/matting_dataset.cpython-37.pyc
ADDED
Binary file (5.67 kB). View file
|
|
matting/dataset/matting_dataset.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import math
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
import random
|
21 |
+
import paddle
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
|
24 |
+
import matting.transforms as T
|
25 |
+
|
26 |
+
|
27 |
+
@manager.DATASETS.add_component
|
28 |
+
class MattingDataset(paddle.io.Dataset):
|
29 |
+
"""
|
30 |
+
Pass in a dataset that conforms to the format.
|
31 |
+
matting_dataset/
|
32 |
+
|--bg/
|
33 |
+
|
|
34 |
+
|--train/
|
35 |
+
| |--fg/
|
36 |
+
| |--alpha/
|
37 |
+
|
|
38 |
+
|--val/
|
39 |
+
| |--fg/
|
40 |
+
| |--alpha/
|
41 |
+
| |--trimap/ (if existing)
|
42 |
+
|
|
43 |
+
|--train.txt
|
44 |
+
|
|
45 |
+
|--val.txt
|
46 |
+
See README.md for more information of dataset.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
dataset_root(str): The root path of dataset.
|
50 |
+
transforms(list): Transforms for image.
|
51 |
+
mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'trainval'). Default: 'train'.
|
52 |
+
train_file (str|list, optional): File list is used to train. It should be `foreground_image.png background_image.png`
|
53 |
+
or `foreground_image.png`. It shold be provided if mode equal to 'train'. Default: None.
|
54 |
+
val_file (str|list, optional): File list is used to evaluation. It should be `foreground_image.png background_image.png`
|
55 |
+
or `foreground_image.png` or ``foreground_image.png background_image.png trimap_image.png`.
|
56 |
+
It shold be provided if mode equal to 'val'. Default: None.
|
57 |
+
get_trimap (bool, optional): Whether to get triamp. Default: True.
|
58 |
+
separator (str, optional): The separator of train_file or val_file. If file name contains ' ', '|' may be perfect. Default: ' '.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self,
|
62 |
+
dataset_root,
|
63 |
+
transforms,
|
64 |
+
mode='train',
|
65 |
+
train_file=None,
|
66 |
+
val_file=None,
|
67 |
+
get_trimap=True,
|
68 |
+
separator=' '):
|
69 |
+
super().__init__()
|
70 |
+
self.dataset_root = dataset_root
|
71 |
+
self.transforms = T.Compose(transforms)
|
72 |
+
self.mode = mode
|
73 |
+
self.get_trimap = get_trimap
|
74 |
+
self.separator = separator
|
75 |
+
|
76 |
+
# check file
|
77 |
+
if mode == 'train' or mode == 'trainval':
|
78 |
+
if train_file is None:
|
79 |
+
raise ValueError(
|
80 |
+
"When `mode` is 'train' or 'trainval', `train_file must be provided!"
|
81 |
+
)
|
82 |
+
if isinstance(train_file, str):
|
83 |
+
train_file = [train_file]
|
84 |
+
file_list = train_file
|
85 |
+
|
86 |
+
if mode == 'val' or mode == 'trainval':
|
87 |
+
if val_file is None:
|
88 |
+
raise ValueError(
|
89 |
+
"When `mode` is 'val' or 'trainval', `val_file must be provided!"
|
90 |
+
)
|
91 |
+
if isinstance(val_file, str):
|
92 |
+
val_file = [val_file]
|
93 |
+
file_list = val_file
|
94 |
+
|
95 |
+
if mode == 'trainval':
|
96 |
+
file_list = train_file + val_file
|
97 |
+
|
98 |
+
# read file
|
99 |
+
self.fg_bg_list = []
|
100 |
+
for file in file_list:
|
101 |
+
file = os.path.join(dataset_root, file)
|
102 |
+
with open(file, 'r') as f:
|
103 |
+
lines = f.readlines()
|
104 |
+
for line in lines:
|
105 |
+
line = line.strip()
|
106 |
+
self.fg_bg_list.append(line)
|
107 |
+
|
108 |
+
def __getitem__(self, idx):
|
109 |
+
data = {}
|
110 |
+
fg_bg_file = self.fg_bg_list[idx]
|
111 |
+
fg_bg_file = fg_bg_file.split(self.separator)
|
112 |
+
data['img_name'] = fg_bg_file[0] # using in save prediction results
|
113 |
+
fg_file = os.path.join(self.dataset_root, fg_bg_file[0])
|
114 |
+
alpha_file = fg_file.replace('/fg', '/alpha')
|
115 |
+
fg = cv2.imread(fg_file)
|
116 |
+
alpha = cv2.imread(alpha_file, 0)
|
117 |
+
data['alpha'] = alpha
|
118 |
+
data['gt_fields'] = []
|
119 |
+
|
120 |
+
# line is: fg [bg] [trimap]
|
121 |
+
if len(fg_bg_file) >= 2:
|
122 |
+
bg_file = os.path.join(self.dataset_root, fg_bg_file[1])
|
123 |
+
bg = cv2.imread(bg_file)
|
124 |
+
data['img'], data['bg'] = self.composite(fg, alpha, bg)
|
125 |
+
data['fg'] = fg
|
126 |
+
if self.mode in ['train', 'trainval']:
|
127 |
+
data['gt_fields'].append('fg')
|
128 |
+
data['gt_fields'].append('bg')
|
129 |
+
data['gt_fields'].append('alpha')
|
130 |
+
if len(fg_bg_file) == 3 and self.get_trimap:
|
131 |
+
if self.mode == 'val':
|
132 |
+
trimap_path = os.path.join(self.dataset_root, fg_bg_file[2])
|
133 |
+
if os.path.exists(trimap_path):
|
134 |
+
data['trimap'] = trimap_path
|
135 |
+
data['gt_fields'].append('trimap')
|
136 |
+
data['ori_trimap'] = cv2.imread(trimap_path, 0)
|
137 |
+
else:
|
138 |
+
raise FileNotFoundError(
|
139 |
+
'trimap is not Found: {}'.format(fg_bg_file[2]))
|
140 |
+
else:
|
141 |
+
data['img'] = fg
|
142 |
+
if self.mode in ['train', 'trainval']:
|
143 |
+
data['fg'] = fg.copy()
|
144 |
+
data['bg'] = fg.copy()
|
145 |
+
data['gt_fields'].append('fg')
|
146 |
+
data['gt_fields'].append('bg')
|
147 |
+
data['gt_fields'].append('alpha')
|
148 |
+
|
149 |
+
data['trans_info'] = [] # Record shape change information
|
150 |
+
|
151 |
+
# Generate trimap from alpha if no trimap file provided
|
152 |
+
if self.get_trimap:
|
153 |
+
if 'trimap' not in data:
|
154 |
+
data['trimap'] = self.gen_trimap(
|
155 |
+
data['alpha'], mode=self.mode).astype('float32')
|
156 |
+
data['gt_fields'].append('trimap')
|
157 |
+
if self.mode == 'val':
|
158 |
+
data['ori_trimap'] = data['trimap'].copy()
|
159 |
+
|
160 |
+
data = self.transforms(data)
|
161 |
+
|
162 |
+
# When evaluation, gt should not be transforms.
|
163 |
+
if self.mode == 'val':
|
164 |
+
data['gt_fields'].append('alpha')
|
165 |
+
|
166 |
+
data['img'] = data['img'].astype('float32')
|
167 |
+
for key in data.get('gt_fields', []):
|
168 |
+
data[key] = data[key].astype('float32')
|
169 |
+
|
170 |
+
if 'trimap' in data:
|
171 |
+
data['trimap'] = data['trimap'][np.newaxis, :, :]
|
172 |
+
if 'ori_trimap' in data:
|
173 |
+
data['ori_trimap'] = data['ori_trimap'][np.newaxis, :, :]
|
174 |
+
|
175 |
+
data['alpha'] = data['alpha'][np.newaxis, :, :] / 255.
|
176 |
+
|
177 |
+
return data
|
178 |
+
|
179 |
+
def __len__(self):
|
180 |
+
return len(self.fg_bg_list)
|
181 |
+
|
182 |
+
def composite(self, fg, alpha, ori_bg):
|
183 |
+
fg_h, fg_w = fg.shape[:2]
|
184 |
+
ori_bg_h, ori_bg_w = ori_bg.shape[:2]
|
185 |
+
|
186 |
+
wratio = fg_w / ori_bg_w
|
187 |
+
hratio = fg_h / ori_bg_h
|
188 |
+
ratio = wratio if wratio > hratio else hratio
|
189 |
+
|
190 |
+
# Resize ori_bg if it is smaller than fg.
|
191 |
+
if ratio > 1:
|
192 |
+
resize_h = math.ceil(ori_bg_h * ratio)
|
193 |
+
resize_w = math.ceil(ori_bg_w * ratio)
|
194 |
+
bg = cv2.resize(
|
195 |
+
ori_bg, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
|
196 |
+
else:
|
197 |
+
bg = ori_bg
|
198 |
+
|
199 |
+
bg = bg[0:fg_h, 0:fg_w, :]
|
200 |
+
alpha = alpha / 255
|
201 |
+
alpha = np.expand_dims(alpha, axis=2)
|
202 |
+
image = alpha * fg + (1 - alpha) * bg
|
203 |
+
image = image.astype(np.uint8)
|
204 |
+
return image, bg
|
205 |
+
|
206 |
+
@staticmethod
|
207 |
+
def gen_trimap(alpha, mode='train', eval_kernel=7):
|
208 |
+
if mode == 'train':
|
209 |
+
k_size = random.choice(range(2, 5))
|
210 |
+
iterations = np.random.randint(5, 15)
|
211 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
|
212 |
+
(k_size, k_size))
|
213 |
+
dilated = cv2.dilate(alpha, kernel, iterations=iterations)
|
214 |
+
eroded = cv2.erode(alpha, kernel, iterations=iterations)
|
215 |
+
trimap = np.zeros(alpha.shape)
|
216 |
+
trimap.fill(128)
|
217 |
+
trimap[eroded > 254.5] = 255
|
218 |
+
trimap[dilated < 0.5] = 0
|
219 |
+
else:
|
220 |
+
k_size = eval_kernel
|
221 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
|
222 |
+
(k_size, k_size))
|
223 |
+
dilated = cv2.dilate(alpha, kernel)
|
224 |
+
trimap = np.zeros(alpha.shape)
|
225 |
+
trimap.fill(128)
|
226 |
+
trimap[alpha >= 250] = 255
|
227 |
+
trimap[dilated <= 5] = 0
|
228 |
+
|
229 |
+
return trimap
|
matting/model/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .vgg import *
|
16 |
+
from .resnet_vd import *
|
17 |
+
from .mobilenet_v2 import *
|
18 |
+
from .hrnet import *
|
19 |
+
from .dim import DIM
|
20 |
+
from .loss import MRSD
|
21 |
+
from .modnet import MODNet
|
matting/model/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (362 Bytes). View file
|
|
matting/model/__pycache__/dim.cpython-37.pyc
ADDED
Binary file (5.55 kB). View file
|
|
matting/model/__pycache__/hrnet.cpython-37.pyc
ADDED
Binary file (17.7 kB). View file
|
|
matting/model/__pycache__/loss.cpython-37.pyc
ADDED
Binary file (1.45 kB). View file
|
|
matting/model/__pycache__/mobilenet_v2.cpython-37.pyc
ADDED
Binary file (6.21 kB). View file
|
|
matting/model/__pycache__/modnet.cpython-37.pyc
ADDED
Binary file (11.9 kB). View file
|
|
matting/model/__pycache__/resnet_vd.cpython-37.pyc
ADDED
Binary file (7.74 kB). View file
|
|
matting/model/__pycache__/vgg.cpython-37.pyc
ADDED
Binary file (4.08 kB). View file
|
|
matting/model/dim.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from collections import defaultdict
|
16 |
+
import paddle
|
17 |
+
import paddle.nn as nn
|
18 |
+
import paddle.nn.functional as F
|
19 |
+
from paddleseg.models import layers
|
20 |
+
from paddleseg import utils
|
21 |
+
from paddleseg.cvlibs import manager
|
22 |
+
|
23 |
+
from .loss import MRSD
|
24 |
+
|
25 |
+
|
26 |
+
@manager.MODELS.add_component
|
27 |
+
class DIM(nn.Layer):
|
28 |
+
"""
|
29 |
+
The DIM implementation based on PaddlePaddle.
|
30 |
+
|
31 |
+
The original article refers to
|
32 |
+
Ning Xu, et, al. "Deep Image Matting"
|
33 |
+
(https://arxiv.org/pdf/1908.07919.pdf).
|
34 |
+
|
35 |
+
Args:
|
36 |
+
backbone: backbone model.
|
37 |
+
stage (int, optional): The stage of model. Defautl: 3.
|
38 |
+
decoder_input_channels(int, optional): The channel of decoder input. Default: 512.
|
39 |
+
pretrained(str, optional): The path of pretrianed model. Defautl: None.
|
40 |
+
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self,
|
44 |
+
backbone,
|
45 |
+
stage=3,
|
46 |
+
decoder_input_channels=512,
|
47 |
+
pretrained=None):
|
48 |
+
super().__init__()
|
49 |
+
self.backbone = backbone
|
50 |
+
self.pretrained = pretrained
|
51 |
+
self.stage = stage
|
52 |
+
|
53 |
+
decoder_output_channels = [64, 128, 256, 512]
|
54 |
+
self.decoder = Decoder(
|
55 |
+
input_channels=decoder_input_channels,
|
56 |
+
output_channels=decoder_output_channels)
|
57 |
+
if self.stage == 2:
|
58 |
+
for param in self.backbone.parameters():
|
59 |
+
param.stop_gradient = True
|
60 |
+
for param in self.decoder.parameters():
|
61 |
+
param.stop_gradient = True
|
62 |
+
if self.stage >= 2:
|
63 |
+
self.refine = Refine()
|
64 |
+
self.init_weight()
|
65 |
+
|
66 |
+
def forward(self, inputs):
|
67 |
+
input_shape = paddle.shape(inputs['img'])[-2:]
|
68 |
+
x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1)
|
69 |
+
fea_list = self.backbone(x)
|
70 |
+
|
71 |
+
# decoder stage
|
72 |
+
up_shape = []
|
73 |
+
for i in range(5):
|
74 |
+
up_shape.append(paddle.shape(fea_list[i])[-2:])
|
75 |
+
alpha_raw = self.decoder(fea_list, up_shape)
|
76 |
+
alpha_raw = F.interpolate(
|
77 |
+
alpha_raw, input_shape, mode='bilinear', align_corners=False)
|
78 |
+
logit_dict = {'alpha_raw': alpha_raw}
|
79 |
+
if self.stage < 2:
|
80 |
+
return logit_dict
|
81 |
+
|
82 |
+
if self.stage >= 2:
|
83 |
+
# refine stage
|
84 |
+
refine_input = paddle.concat([inputs['img'], alpha_raw], axis=1)
|
85 |
+
alpha_refine = self.refine(refine_input)
|
86 |
+
|
87 |
+
# finally alpha
|
88 |
+
alpha_pred = alpha_refine + alpha_raw
|
89 |
+
alpha_pred = F.interpolate(
|
90 |
+
alpha_pred, input_shape, mode='bilinear', align_corners=False)
|
91 |
+
if not self.training:
|
92 |
+
alpha_pred = paddle.clip(alpha_pred, min=0, max=1)
|
93 |
+
logit_dict['alpha_pred'] = alpha_pred
|
94 |
+
if self.training:
|
95 |
+
return logit_dict
|
96 |
+
else:
|
97 |
+
return alpha_pred
|
98 |
+
|
99 |
+
def loss(self, logit_dict, label_dict, loss_func_dict=None):
|
100 |
+
if loss_func_dict is None:
|
101 |
+
loss_func_dict = defaultdict(list)
|
102 |
+
loss_func_dict['alpha_raw'].append(MRSD())
|
103 |
+
loss_func_dict['comp'].append(MRSD())
|
104 |
+
loss_func_dict['alpha_pred'].append(MRSD())
|
105 |
+
|
106 |
+
loss = {}
|
107 |
+
mask = label_dict['trimap'] == 128
|
108 |
+
loss['all'] = 0
|
109 |
+
|
110 |
+
if self.stage != 2:
|
111 |
+
loss['alpha_raw'] = loss_func_dict['alpha_raw'][0](
|
112 |
+
logit_dict['alpha_raw'], label_dict['alpha'], mask)
|
113 |
+
loss['alpha_raw'] = 0.5 * loss['alpha_raw']
|
114 |
+
loss['all'] = loss['all'] + loss['alpha_raw']
|
115 |
+
|
116 |
+
if self.stage == 1 or self.stage == 3:
|
117 |
+
comp_pred = logit_dict['alpha_raw'] * label_dict['fg'] + \
|
118 |
+
(1 - logit_dict['alpha_raw']) * label_dict['bg']
|
119 |
+
loss['comp'] = loss_func_dict['comp'][0](comp_pred,
|
120 |
+
label_dict['img'], mask)
|
121 |
+
loss['comp'] = 0.5 * loss['comp']
|
122 |
+
loss['all'] = loss['all'] + loss['comp']
|
123 |
+
|
124 |
+
if self.stage == 2 or self.stage == 3:
|
125 |
+
loss['alpha_pred'] = loss_func_dict['alpha_pred'][0](
|
126 |
+
logit_dict['alpha_pred'], label_dict['alpha'], mask)
|
127 |
+
loss['all'] = loss['all'] + loss['alpha_pred']
|
128 |
+
|
129 |
+
return loss
|
130 |
+
|
131 |
+
def init_weight(self):
|
132 |
+
if self.pretrained is not None:
|
133 |
+
utils.load_entire_model(self, self.pretrained)
|
134 |
+
|
135 |
+
|
136 |
+
# bilinear interpolate skip connect
|
137 |
+
class Up(nn.Layer):
|
138 |
+
def __init__(self, input_channels, output_channels):
|
139 |
+
super().__init__()
|
140 |
+
self.conv = layers.ConvBNReLU(
|
141 |
+
input_channels,
|
142 |
+
output_channels,
|
143 |
+
kernel_size=5,
|
144 |
+
padding=2,
|
145 |
+
bias_attr=False)
|
146 |
+
|
147 |
+
def forward(self, x, skip, output_shape):
|
148 |
+
x = F.interpolate(
|
149 |
+
x, size=output_shape, mode='bilinear', align_corners=False)
|
150 |
+
x = x + skip
|
151 |
+
x = self.conv(x)
|
152 |
+
x = F.relu(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class Decoder(nn.Layer):
|
158 |
+
def __init__(self, input_channels, output_channels=(64, 128, 256, 512)):
|
159 |
+
super().__init__()
|
160 |
+
self.deconv6 = nn.Conv2D(
|
161 |
+
input_channels, input_channels, kernel_size=1, bias_attr=False)
|
162 |
+
self.deconv5 = Up(input_channels, output_channels[-1])
|
163 |
+
self.deconv4 = Up(output_channels[-1], output_channels[-2])
|
164 |
+
self.deconv3 = Up(output_channels[-2], output_channels[-3])
|
165 |
+
self.deconv2 = Up(output_channels[-3], output_channels[-4])
|
166 |
+
self.deconv1 = Up(output_channels[-4], 64)
|
167 |
+
|
168 |
+
self.alpha_conv = nn.Conv2D(
|
169 |
+
64, 1, kernel_size=5, padding=2, bias_attr=False)
|
170 |
+
|
171 |
+
def forward(self, fea_list, shape_list):
|
172 |
+
x = fea_list[-1]
|
173 |
+
x = self.deconv6(x)
|
174 |
+
x = self.deconv5(x, fea_list[4], shape_list[4])
|
175 |
+
x = self.deconv4(x, fea_list[3], shape_list[3])
|
176 |
+
x = self.deconv3(x, fea_list[2], shape_list[2])
|
177 |
+
x = self.deconv2(x, fea_list[1], shape_list[1])
|
178 |
+
x = self.deconv1(x, fea_list[0], shape_list[0])
|
179 |
+
alpha = self.alpha_conv(x)
|
180 |
+
alpha = F.sigmoid(alpha)
|
181 |
+
|
182 |
+
return alpha
|
183 |
+
|
184 |
+
|
185 |
+
class Refine(nn.Layer):
|
186 |
+
def __init__(self):
|
187 |
+
super().__init__()
|
188 |
+
self.conv1 = layers.ConvBNReLU(
|
189 |
+
4, 64, kernel_size=3, padding=1, bias_attr=False)
|
190 |
+
self.conv2 = layers.ConvBNReLU(
|
191 |
+
64, 64, kernel_size=3, padding=1, bias_attr=False)
|
192 |
+
self.conv3 = layers.ConvBNReLU(
|
193 |
+
64, 64, kernel_size=3, padding=1, bias_attr=False)
|
194 |
+
self.alpha_pred = layers.ConvBNReLU(
|
195 |
+
64, 1, kernel_size=3, padding=1, bias_attr=False)
|
196 |
+
|
197 |
+
def forward(self, x):
|
198 |
+
x = self.conv1(x)
|
199 |
+
x = self.conv2(x)
|
200 |
+
x = self.conv3(x)
|
201 |
+
alpha = self.alpha_pred(x)
|
202 |
+
|
203 |
+
return alpha
|
matting/model/hrnet.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import paddle
|
18 |
+
import paddle.nn as nn
|
19 |
+
import paddle.nn.functional as F
|
20 |
+
|
21 |
+
from paddleseg.cvlibs import manager, param_init
|
22 |
+
from paddleseg.models import layers
|
23 |
+
from paddleseg.utils import utils
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
|
27 |
+
"HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64"
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
class HRNet(nn.Layer):
|
32 |
+
"""
|
33 |
+
The HRNet implementation based on PaddlePaddle.
|
34 |
+
|
35 |
+
The original article refers to
|
36 |
+
Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition"
|
37 |
+
(https://arxiv.org/pdf/1908.07919.pdf).
|
38 |
+
|
39 |
+
Args:
|
40 |
+
pretrained (str, optional): The path of pretrained model.
|
41 |
+
stage1_num_modules (int, optional): Number of modules for stage1. Default 1.
|
42 |
+
stage1_num_blocks (list, optional): Number of blocks per module for stage1. Default (4).
|
43 |
+
stage1_num_channels (list, optional): Number of channels per branch for stage1. Default (64).
|
44 |
+
stage2_num_modules (int, optional): Number of modules for stage2. Default 1.
|
45 |
+
stage2_num_blocks (list, optional): Number of blocks per module for stage2. Default (4, 4).
|
46 |
+
stage2_num_channels (list, optional): Number of channels per branch for stage2. Default (18, 36).
|
47 |
+
stage3_num_modules (int, optional): Number of modules for stage3. Default 4.
|
48 |
+
stage3_num_blocks (list, optional): Number of blocks per module for stage3. Default (4, 4, 4).
|
49 |
+
stage3_num_channels (list, optional): Number of channels per branch for stage3. Default [18, 36, 72).
|
50 |
+
stage4_num_modules (int, optional): Number of modules for stage4. Default 3.
|
51 |
+
stage4_num_blocks (list, optional): Number of blocks per module for stage4. Default (4, 4, 4, 4).
|
52 |
+
stage4_num_channels (list, optional): Number of channels per branch for stage4. Default (18, 36, 72. 144).
|
53 |
+
has_se (bool, optional): Whether to use Squeeze-and-Excitation module. Default False.
|
54 |
+
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
|
55 |
+
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self,
|
59 |
+
input_channels=3,
|
60 |
+
pretrained=None,
|
61 |
+
stage1_num_modules=1,
|
62 |
+
stage1_num_blocks=(4, ),
|
63 |
+
stage1_num_channels=(64, ),
|
64 |
+
stage2_num_modules=1,
|
65 |
+
stage2_num_blocks=(4, 4),
|
66 |
+
stage2_num_channels=(18, 36),
|
67 |
+
stage3_num_modules=4,
|
68 |
+
stage3_num_blocks=(4, 4, 4),
|
69 |
+
stage3_num_channels=(18, 36, 72),
|
70 |
+
stage4_num_modules=3,
|
71 |
+
stage4_num_blocks=(4, 4, 4, 4),
|
72 |
+
stage4_num_channels=(18, 36, 72, 144),
|
73 |
+
has_se=False,
|
74 |
+
align_corners=False,
|
75 |
+
padding_same=True):
|
76 |
+
super(HRNet, self).__init__()
|
77 |
+
self.pretrained = pretrained
|
78 |
+
self.stage1_num_modules = stage1_num_modules
|
79 |
+
self.stage1_num_blocks = stage1_num_blocks
|
80 |
+
self.stage1_num_channels = stage1_num_channels
|
81 |
+
self.stage2_num_modules = stage2_num_modules
|
82 |
+
self.stage2_num_blocks = stage2_num_blocks
|
83 |
+
self.stage2_num_channels = stage2_num_channels
|
84 |
+
self.stage3_num_modules = stage3_num_modules
|
85 |
+
self.stage3_num_blocks = stage3_num_blocks
|
86 |
+
self.stage3_num_channels = stage3_num_channels
|
87 |
+
self.stage4_num_modules = stage4_num_modules
|
88 |
+
self.stage4_num_blocks = stage4_num_blocks
|
89 |
+
self.stage4_num_channels = stage4_num_channels
|
90 |
+
self.has_se = has_se
|
91 |
+
self.align_corners = align_corners
|
92 |
+
|
93 |
+
self.feat_channels = [i for i in stage4_num_channels]
|
94 |
+
self.feat_channels = [64] + self.feat_channels
|
95 |
+
|
96 |
+
self.conv_layer1_1 = layers.ConvBNReLU(
|
97 |
+
in_channels=input_channels,
|
98 |
+
out_channels=64,
|
99 |
+
kernel_size=3,
|
100 |
+
stride=2,
|
101 |
+
padding=1 if not padding_same else 'same',
|
102 |
+
bias_attr=False)
|
103 |
+
|
104 |
+
self.conv_layer1_2 = layers.ConvBNReLU(
|
105 |
+
in_channels=64,
|
106 |
+
out_channels=64,
|
107 |
+
kernel_size=3,
|
108 |
+
stride=2,
|
109 |
+
padding=1 if not padding_same else 'same',
|
110 |
+
bias_attr=False)
|
111 |
+
|
112 |
+
self.la1 = Layer1(
|
113 |
+
num_channels=64,
|
114 |
+
num_blocks=self.stage1_num_blocks[0],
|
115 |
+
num_filters=self.stage1_num_channels[0],
|
116 |
+
has_se=has_se,
|
117 |
+
name="layer2",
|
118 |
+
padding_same=padding_same)
|
119 |
+
|
120 |
+
self.tr1 = TransitionLayer(
|
121 |
+
in_channels=[self.stage1_num_channels[0] * 4],
|
122 |
+
out_channels=self.stage2_num_channels,
|
123 |
+
name="tr1",
|
124 |
+
padding_same=padding_same)
|
125 |
+
|
126 |
+
self.st2 = Stage(
|
127 |
+
num_channels=self.stage2_num_channels,
|
128 |
+
num_modules=self.stage2_num_modules,
|
129 |
+
num_blocks=self.stage2_num_blocks,
|
130 |
+
num_filters=self.stage2_num_channels,
|
131 |
+
has_se=self.has_se,
|
132 |
+
name="st2",
|
133 |
+
align_corners=align_corners,
|
134 |
+
padding_same=padding_same)
|
135 |
+
|
136 |
+
self.tr2 = TransitionLayer(
|
137 |
+
in_channels=self.stage2_num_channels,
|
138 |
+
out_channels=self.stage3_num_channels,
|
139 |
+
name="tr2",
|
140 |
+
padding_same=padding_same)
|
141 |
+
self.st3 = Stage(
|
142 |
+
num_channels=self.stage3_num_channels,
|
143 |
+
num_modules=self.stage3_num_modules,
|
144 |
+
num_blocks=self.stage3_num_blocks,
|
145 |
+
num_filters=self.stage3_num_channels,
|
146 |
+
has_se=self.has_se,
|
147 |
+
name="st3",
|
148 |
+
align_corners=align_corners,
|
149 |
+
padding_same=padding_same)
|
150 |
+
|
151 |
+
self.tr3 = TransitionLayer(
|
152 |
+
in_channels=self.stage3_num_channels,
|
153 |
+
out_channels=self.stage4_num_channels,
|
154 |
+
name="tr3",
|
155 |
+
padding_same=padding_same)
|
156 |
+
self.st4 = Stage(
|
157 |
+
num_channels=self.stage4_num_channels,
|
158 |
+
num_modules=self.stage4_num_modules,
|
159 |
+
num_blocks=self.stage4_num_blocks,
|
160 |
+
num_filters=self.stage4_num_channels,
|
161 |
+
has_se=self.has_se,
|
162 |
+
name="st4",
|
163 |
+
align_corners=align_corners,
|
164 |
+
padding_same=padding_same)
|
165 |
+
|
166 |
+
self.init_weight()
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
feat_list = []
|
170 |
+
conv1 = self.conv_layer1_1(x)
|
171 |
+
feat_list.append(conv1)
|
172 |
+
conv2 = self.conv_layer1_2(conv1)
|
173 |
+
|
174 |
+
la1 = self.la1(conv2)
|
175 |
+
|
176 |
+
tr1 = self.tr1([la1])
|
177 |
+
st2 = self.st2(tr1)
|
178 |
+
|
179 |
+
tr2 = self.tr2(st2)
|
180 |
+
st3 = self.st3(tr2)
|
181 |
+
|
182 |
+
tr3 = self.tr3(st3)
|
183 |
+
st4 = self.st4(tr3)
|
184 |
+
|
185 |
+
feat_list = feat_list + st4
|
186 |
+
|
187 |
+
return feat_list
|
188 |
+
|
189 |
+
def init_weight(self):
|
190 |
+
for layer in self.sublayers():
|
191 |
+
if isinstance(layer, nn.Conv2D):
|
192 |
+
param_init.normal_init(layer.weight, std=0.001)
|
193 |
+
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
|
194 |
+
param_init.constant_init(layer.weight, value=1.0)
|
195 |
+
param_init.constant_init(layer.bias, value=0.0)
|
196 |
+
if self.pretrained is not None:
|
197 |
+
utils.load_pretrained_model(self, self.pretrained)
|
198 |
+
|
199 |
+
|
200 |
+
class Layer1(nn.Layer):
|
201 |
+
def __init__(self,
|
202 |
+
num_channels,
|
203 |
+
num_filters,
|
204 |
+
num_blocks,
|
205 |
+
has_se=False,
|
206 |
+
name=None,
|
207 |
+
padding_same=True):
|
208 |
+
super(Layer1, self).__init__()
|
209 |
+
|
210 |
+
self.bottleneck_block_list = []
|
211 |
+
|
212 |
+
for i in range(num_blocks):
|
213 |
+
bottleneck_block = self.add_sublayer(
|
214 |
+
"bb_{}_{}".format(name, i + 1),
|
215 |
+
BottleneckBlock(
|
216 |
+
num_channels=num_channels if i == 0 else num_filters * 4,
|
217 |
+
num_filters=num_filters,
|
218 |
+
has_se=has_se,
|
219 |
+
stride=1,
|
220 |
+
downsample=True if i == 0 else False,
|
221 |
+
name=name + '_' + str(i + 1),
|
222 |
+
padding_same=padding_same))
|
223 |
+
self.bottleneck_block_list.append(bottleneck_block)
|
224 |
+
|
225 |
+
def forward(self, x):
|
226 |
+
conv = x
|
227 |
+
for block_func in self.bottleneck_block_list:
|
228 |
+
conv = block_func(conv)
|
229 |
+
return conv
|
230 |
+
|
231 |
+
|
232 |
+
class TransitionLayer(nn.Layer):
|
233 |
+
def __init__(self, in_channels, out_channels, name=None, padding_same=True):
|
234 |
+
super(TransitionLayer, self).__init__()
|
235 |
+
|
236 |
+
num_in = len(in_channels)
|
237 |
+
num_out = len(out_channels)
|
238 |
+
self.conv_bn_func_list = []
|
239 |
+
for i in range(num_out):
|
240 |
+
residual = None
|
241 |
+
if i < num_in:
|
242 |
+
if in_channels[i] != out_channels[i]:
|
243 |
+
residual = self.add_sublayer(
|
244 |
+
"transition_{}_layer_{}".format(name, i + 1),
|
245 |
+
layers.ConvBNReLU(
|
246 |
+
in_channels=in_channels[i],
|
247 |
+
out_channels=out_channels[i],
|
248 |
+
kernel_size=3,
|
249 |
+
padding=1 if not padding_same else 'same',
|
250 |
+
bias_attr=False))
|
251 |
+
else:
|
252 |
+
residual = self.add_sublayer(
|
253 |
+
"transition_{}_layer_{}".format(name, i + 1),
|
254 |
+
layers.ConvBNReLU(
|
255 |
+
in_channels=in_channels[-1],
|
256 |
+
out_channels=out_channels[i],
|
257 |
+
kernel_size=3,
|
258 |
+
stride=2,
|
259 |
+
padding=1 if not padding_same else 'same',
|
260 |
+
bias_attr=False))
|
261 |
+
self.conv_bn_func_list.append(residual)
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
outs = []
|
265 |
+
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
|
266 |
+
if conv_bn_func is None:
|
267 |
+
outs.append(x[idx])
|
268 |
+
else:
|
269 |
+
if idx < len(x):
|
270 |
+
outs.append(conv_bn_func(x[idx]))
|
271 |
+
else:
|
272 |
+
outs.append(conv_bn_func(x[-1]))
|
273 |
+
return outs
|
274 |
+
|
275 |
+
|
276 |
+
class Branches(nn.Layer):
|
277 |
+
def __init__(self,
|
278 |
+
num_blocks,
|
279 |
+
in_channels,
|
280 |
+
out_channels,
|
281 |
+
has_se=False,
|
282 |
+
name=None,
|
283 |
+
padding_same=True):
|
284 |
+
super(Branches, self).__init__()
|
285 |
+
|
286 |
+
self.basic_block_list = []
|
287 |
+
|
288 |
+
for i in range(len(out_channels)):
|
289 |
+
self.basic_block_list.append([])
|
290 |
+
for j in range(num_blocks[i]):
|
291 |
+
in_ch = in_channels[i] if j == 0 else out_channels[i]
|
292 |
+
basic_block_func = self.add_sublayer(
|
293 |
+
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
|
294 |
+
BasicBlock(
|
295 |
+
num_channels=in_ch,
|
296 |
+
num_filters=out_channels[i],
|
297 |
+
has_se=has_se,
|
298 |
+
name=name + '_branch_layer_' + str(i + 1) + '_' +
|
299 |
+
str(j + 1),
|
300 |
+
padding_same=padding_same))
|
301 |
+
self.basic_block_list[i].append(basic_block_func)
|
302 |
+
|
303 |
+
def forward(self, x):
|
304 |
+
outs = []
|
305 |
+
for idx, input in enumerate(x):
|
306 |
+
conv = input
|
307 |
+
for basic_block_func in self.basic_block_list[idx]:
|
308 |
+
conv = basic_block_func(conv)
|
309 |
+
outs.append(conv)
|
310 |
+
return outs
|
311 |
+
|
312 |
+
|
313 |
+
class BottleneckBlock(nn.Layer):
|
314 |
+
def __init__(self,
|
315 |
+
num_channels,
|
316 |
+
num_filters,
|
317 |
+
has_se,
|
318 |
+
stride=1,
|
319 |
+
downsample=False,
|
320 |
+
name=None,
|
321 |
+
padding_same=True):
|
322 |
+
super(BottleneckBlock, self).__init__()
|
323 |
+
|
324 |
+
self.has_se = has_se
|
325 |
+
self.downsample = downsample
|
326 |
+
|
327 |
+
self.conv1 = layers.ConvBNReLU(
|
328 |
+
in_channels=num_channels,
|
329 |
+
out_channels=num_filters,
|
330 |
+
kernel_size=1,
|
331 |
+
bias_attr=False)
|
332 |
+
|
333 |
+
self.conv2 = layers.ConvBNReLU(
|
334 |
+
in_channels=num_filters,
|
335 |
+
out_channels=num_filters,
|
336 |
+
kernel_size=3,
|
337 |
+
stride=stride,
|
338 |
+
padding=1 if not padding_same else 'same',
|
339 |
+
bias_attr=False)
|
340 |
+
|
341 |
+
self.conv3 = layers.ConvBN(
|
342 |
+
in_channels=num_filters,
|
343 |
+
out_channels=num_filters * 4,
|
344 |
+
kernel_size=1,
|
345 |
+
bias_attr=False)
|
346 |
+
|
347 |
+
if self.downsample:
|
348 |
+
self.conv_down = layers.ConvBN(
|
349 |
+
in_channels=num_channels,
|
350 |
+
out_channels=num_filters * 4,
|
351 |
+
kernel_size=1,
|
352 |
+
bias_attr=False)
|
353 |
+
|
354 |
+
if self.has_se:
|
355 |
+
self.se = SELayer(
|
356 |
+
num_channels=num_filters * 4,
|
357 |
+
num_filters=num_filters * 4,
|
358 |
+
reduction_ratio=16,
|
359 |
+
name=name + '_fc')
|
360 |
+
|
361 |
+
self.add = layers.Add()
|
362 |
+
self.relu = layers.Activation("relu")
|
363 |
+
|
364 |
+
def forward(self, x):
|
365 |
+
residual = x
|
366 |
+
conv1 = self.conv1(x)
|
367 |
+
conv2 = self.conv2(conv1)
|
368 |
+
conv3 = self.conv3(conv2)
|
369 |
+
|
370 |
+
if self.downsample:
|
371 |
+
residual = self.conv_down(x)
|
372 |
+
|
373 |
+
if self.has_se:
|
374 |
+
conv3 = self.se(conv3)
|
375 |
+
|
376 |
+
y = self.add(conv3, residual)
|
377 |
+
y = self.relu(y)
|
378 |
+
return y
|
379 |
+
|
380 |
+
|
381 |
+
class BasicBlock(nn.Layer):
|
382 |
+
def __init__(self,
|
383 |
+
num_channels,
|
384 |
+
num_filters,
|
385 |
+
stride=1,
|
386 |
+
has_se=False,
|
387 |
+
downsample=False,
|
388 |
+
name=None,
|
389 |
+
padding_same=True):
|
390 |
+
super(BasicBlock, self).__init__()
|
391 |
+
|
392 |
+
self.has_se = has_se
|
393 |
+
self.downsample = downsample
|
394 |
+
|
395 |
+
self.conv1 = layers.ConvBNReLU(
|
396 |
+
in_channels=num_channels,
|
397 |
+
out_channels=num_filters,
|
398 |
+
kernel_size=3,
|
399 |
+
stride=stride,
|
400 |
+
padding=1 if not padding_same else 'same',
|
401 |
+
bias_attr=False)
|
402 |
+
self.conv2 = layers.ConvBN(
|
403 |
+
in_channels=num_filters,
|
404 |
+
out_channels=num_filters,
|
405 |
+
kernel_size=3,
|
406 |
+
padding=1 if not padding_same else 'same',
|
407 |
+
bias_attr=False)
|
408 |
+
|
409 |
+
if self.downsample:
|
410 |
+
self.conv_down = layers.ConvBNReLU(
|
411 |
+
in_channels=num_channels,
|
412 |
+
out_channels=num_filters,
|
413 |
+
kernel_size=1,
|
414 |
+
bias_attr=False)
|
415 |
+
|
416 |
+
if self.has_se:
|
417 |
+
self.se = SELayer(
|
418 |
+
num_channels=num_filters,
|
419 |
+
num_filters=num_filters,
|
420 |
+
reduction_ratio=16,
|
421 |
+
name=name + '_fc')
|
422 |
+
|
423 |
+
self.add = layers.Add()
|
424 |
+
self.relu = layers.Activation("relu")
|
425 |
+
|
426 |
+
def forward(self, x):
|
427 |
+
residual = x
|
428 |
+
conv1 = self.conv1(x)
|
429 |
+
conv2 = self.conv2(conv1)
|
430 |
+
|
431 |
+
if self.downsample:
|
432 |
+
residual = self.conv_down(x)
|
433 |
+
|
434 |
+
if self.has_se:
|
435 |
+
conv2 = self.se(conv2)
|
436 |
+
|
437 |
+
y = self.add(conv2, residual)
|
438 |
+
y = self.relu(y)
|
439 |
+
return y
|
440 |
+
|
441 |
+
|
442 |
+
class SELayer(nn.Layer):
|
443 |
+
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
|
444 |
+
super(SELayer, self).__init__()
|
445 |
+
|
446 |
+
self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
|
447 |
+
|
448 |
+
self._num_channels = num_channels
|
449 |
+
|
450 |
+
med_ch = int(num_channels / reduction_ratio)
|
451 |
+
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
452 |
+
self.squeeze = nn.Linear(
|
453 |
+
num_channels,
|
454 |
+
med_ch,
|
455 |
+
weight_attr=paddle.ParamAttr(
|
456 |
+
initializer=nn.initializer.Uniform(-stdv, stdv)))
|
457 |
+
|
458 |
+
stdv = 1.0 / math.sqrt(med_ch * 1.0)
|
459 |
+
self.excitation = nn.Linear(
|
460 |
+
med_ch,
|
461 |
+
num_filters,
|
462 |
+
weight_attr=paddle.ParamAttr(
|
463 |
+
initializer=nn.initializer.Uniform(-stdv, stdv)))
|
464 |
+
|
465 |
+
def forward(self, x):
|
466 |
+
pool = self.pool2d_gap(x)
|
467 |
+
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
|
468 |
+
squeeze = self.squeeze(pool)
|
469 |
+
squeeze = F.relu(squeeze)
|
470 |
+
excitation = self.excitation(squeeze)
|
471 |
+
excitation = F.sigmoid(excitation)
|
472 |
+
excitation = paddle.reshape(
|
473 |
+
excitation, shape=[-1, self._num_channels, 1, 1])
|
474 |
+
out = x * excitation
|
475 |
+
return out
|
476 |
+
|
477 |
+
|
478 |
+
class Stage(nn.Layer):
|
479 |
+
def __init__(self,
|
480 |
+
num_channels,
|
481 |
+
num_modules,
|
482 |
+
num_blocks,
|
483 |
+
num_filters,
|
484 |
+
has_se=False,
|
485 |
+
multi_scale_output=True,
|
486 |
+
name=None,
|
487 |
+
align_corners=False,
|
488 |
+
padding_same=True):
|
489 |
+
super(Stage, self).__init__()
|
490 |
+
|
491 |
+
self._num_modules = num_modules
|
492 |
+
|
493 |
+
self.stage_func_list = []
|
494 |
+
for i in range(num_modules):
|
495 |
+
if i == num_modules - 1 and not multi_scale_output:
|
496 |
+
stage_func = self.add_sublayer(
|
497 |
+
"stage_{}_{}".format(name, i + 1),
|
498 |
+
HighResolutionModule(
|
499 |
+
num_channels=num_channels,
|
500 |
+
num_blocks=num_blocks,
|
501 |
+
num_filters=num_filters,
|
502 |
+
has_se=has_se,
|
503 |
+
multi_scale_output=False,
|
504 |
+
name=name + '_' + str(i + 1),
|
505 |
+
align_corners=align_corners,
|
506 |
+
padding_same=padding_same))
|
507 |
+
else:
|
508 |
+
stage_func = self.add_sublayer(
|
509 |
+
"stage_{}_{}".format(name, i + 1),
|
510 |
+
HighResolutionModule(
|
511 |
+
num_channels=num_channels,
|
512 |
+
num_blocks=num_blocks,
|
513 |
+
num_filters=num_filters,
|
514 |
+
has_se=has_se,
|
515 |
+
name=name + '_' + str(i + 1),
|
516 |
+
align_corners=align_corners,
|
517 |
+
padding_same=padding_same))
|
518 |
+
|
519 |
+
self.stage_func_list.append(stage_func)
|
520 |
+
|
521 |
+
def forward(self, x):
|
522 |
+
out = x
|
523 |
+
for idx in range(self._num_modules):
|
524 |
+
out = self.stage_func_list[idx](out)
|
525 |
+
return out
|
526 |
+
|
527 |
+
|
528 |
+
class HighResolutionModule(nn.Layer):
|
529 |
+
def __init__(self,
|
530 |
+
num_channels,
|
531 |
+
num_blocks,
|
532 |
+
num_filters,
|
533 |
+
has_se=False,
|
534 |
+
multi_scale_output=True,
|
535 |
+
name=None,
|
536 |
+
align_corners=False,
|
537 |
+
padding_same=True):
|
538 |
+
super(HighResolutionModule, self).__init__()
|
539 |
+
|
540 |
+
self.branches_func = Branches(
|
541 |
+
num_blocks=num_blocks,
|
542 |
+
in_channels=num_channels,
|
543 |
+
out_channels=num_filters,
|
544 |
+
has_se=has_se,
|
545 |
+
name=name,
|
546 |
+
padding_same=padding_same)
|
547 |
+
|
548 |
+
self.fuse_func = FuseLayers(
|
549 |
+
in_channels=num_filters,
|
550 |
+
out_channels=num_filters,
|
551 |
+
multi_scale_output=multi_scale_output,
|
552 |
+
name=name,
|
553 |
+
align_corners=align_corners,
|
554 |
+
padding_same=padding_same)
|
555 |
+
|
556 |
+
def forward(self, x):
|
557 |
+
out = self.branches_func(x)
|
558 |
+
out = self.fuse_func(out)
|
559 |
+
return out
|
560 |
+
|
561 |
+
|
562 |
+
class FuseLayers(nn.Layer):
|
563 |
+
def __init__(self,
|
564 |
+
in_channels,
|
565 |
+
out_channels,
|
566 |
+
multi_scale_output=True,
|
567 |
+
name=None,
|
568 |
+
align_corners=False,
|
569 |
+
padding_same=True):
|
570 |
+
super(FuseLayers, self).__init__()
|
571 |
+
|
572 |
+
self._actual_ch = len(in_channels) if multi_scale_output else 1
|
573 |
+
self._in_channels = in_channels
|
574 |
+
self.align_corners = align_corners
|
575 |
+
|
576 |
+
self.residual_func_list = []
|
577 |
+
for i in range(self._actual_ch):
|
578 |
+
for j in range(len(in_channels)):
|
579 |
+
if j > i:
|
580 |
+
residual_func = self.add_sublayer(
|
581 |
+
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
|
582 |
+
layers.ConvBN(
|
583 |
+
in_channels=in_channels[j],
|
584 |
+
out_channels=out_channels[i],
|
585 |
+
kernel_size=1,
|
586 |
+
bias_attr=False))
|
587 |
+
self.residual_func_list.append(residual_func)
|
588 |
+
elif j < i:
|
589 |
+
pre_num_filters = in_channels[j]
|
590 |
+
for k in range(i - j):
|
591 |
+
if k == i - j - 1:
|
592 |
+
residual_func = self.add_sublayer(
|
593 |
+
"residual_{}_layer_{}_{}_{}".format(
|
594 |
+
name, i + 1, j + 1, k + 1),
|
595 |
+
layers.ConvBN(
|
596 |
+
in_channels=pre_num_filters,
|
597 |
+
out_channels=out_channels[i],
|
598 |
+
kernel_size=3,
|
599 |
+
stride=2,
|
600 |
+
padding=1 if not padding_same else 'same',
|
601 |
+
bias_attr=False))
|
602 |
+
pre_num_filters = out_channels[i]
|
603 |
+
else:
|
604 |
+
residual_func = self.add_sublayer(
|
605 |
+
"residual_{}_layer_{}_{}_{}".format(
|
606 |
+
name, i + 1, j + 1, k + 1),
|
607 |
+
layers.ConvBNReLU(
|
608 |
+
in_channels=pre_num_filters,
|
609 |
+
out_channels=out_channels[j],
|
610 |
+
kernel_size=3,
|
611 |
+
stride=2,
|
612 |
+
padding=1 if not padding_same else 'same',
|
613 |
+
bias_attr=False))
|
614 |
+
pre_num_filters = out_channels[j]
|
615 |
+
self.residual_func_list.append(residual_func)
|
616 |
+
|
617 |
+
def forward(self, x):
|
618 |
+
outs = []
|
619 |
+
residual_func_idx = 0
|
620 |
+
for i in range(self._actual_ch):
|
621 |
+
residual = x[i]
|
622 |
+
residual_shape = paddle.shape(residual)[-2:]
|
623 |
+
for j in range(len(self._in_channels)):
|
624 |
+
if j > i:
|
625 |
+
y = self.residual_func_list[residual_func_idx](x[j])
|
626 |
+
residual_func_idx += 1
|
627 |
+
|
628 |
+
y = F.interpolate(
|
629 |
+
y,
|
630 |
+
residual_shape,
|
631 |
+
mode='bilinear',
|
632 |
+
align_corners=self.align_corners)
|
633 |
+
residual = residual + y
|
634 |
+
elif j < i:
|
635 |
+
y = x[j]
|
636 |
+
for k in range(i - j):
|
637 |
+
y = self.residual_func_list[residual_func_idx](y)
|
638 |
+
residual_func_idx += 1
|
639 |
+
|
640 |
+
residual = residual + y
|
641 |
+
|
642 |
+
residual = F.relu(residual)
|
643 |
+
outs.append(residual)
|
644 |
+
|
645 |
+
return outs
|
646 |
+
|
647 |
+
|
648 |
+
@manager.BACKBONES.add_component
|
649 |
+
def HRNet_W18_Small_V1(**kwargs):
|
650 |
+
model = HRNet(
|
651 |
+
stage1_num_modules=1,
|
652 |
+
stage1_num_blocks=[1],
|
653 |
+
stage1_num_channels=[32],
|
654 |
+
stage2_num_modules=1,
|
655 |
+
stage2_num_blocks=[2, 2],
|
656 |
+
stage2_num_channels=[16, 32],
|
657 |
+
stage3_num_modules=1,
|
658 |
+
stage3_num_blocks=[2, 2, 2],
|
659 |
+
stage3_num_channels=[16, 32, 64],
|
660 |
+
stage4_num_modules=1,
|
661 |
+
stage4_num_blocks=[2, 2, 2, 2],
|
662 |
+
stage4_num_channels=[16, 32, 64, 128],
|
663 |
+
**kwargs)
|
664 |
+
return model
|
665 |
+
|
666 |
+
|
667 |
+
@manager.BACKBONES.add_component
|
668 |
+
def HRNet_W18_Small_V2(**kwargs):
|
669 |
+
model = HRNet(
|
670 |
+
stage1_num_modules=1,
|
671 |
+
stage1_num_blocks=[2],
|
672 |
+
stage1_num_channels=[64],
|
673 |
+
stage2_num_modules=1,
|
674 |
+
stage2_num_blocks=[2, 2],
|
675 |
+
stage2_num_channels=[18, 36],
|
676 |
+
stage3_num_modules=3,
|
677 |
+
stage3_num_blocks=[2, 2, 2],
|
678 |
+
stage3_num_channels=[18, 36, 72],
|
679 |
+
stage4_num_modules=2,
|
680 |
+
stage4_num_blocks=[2, 2, 2, 2],
|
681 |
+
stage4_num_channels=[18, 36, 72, 144],
|
682 |
+
**kwargs)
|
683 |
+
return model
|
684 |
+
|
685 |
+
|
686 |
+
@manager.BACKBONES.add_component
|
687 |
+
def HRNet_W18(**kwargs):
|
688 |
+
model = HRNet(
|
689 |
+
stage1_num_modules=1,
|
690 |
+
stage1_num_blocks=[4],
|
691 |
+
stage1_num_channels=[64],
|
692 |
+
stage2_num_modules=1,
|
693 |
+
stage2_num_blocks=[4, 4],
|
694 |
+
stage2_num_channels=[18, 36],
|
695 |
+
stage3_num_modules=4,
|
696 |
+
stage3_num_blocks=[4, 4, 4],
|
697 |
+
stage3_num_channels=[18, 36, 72],
|
698 |
+
stage4_num_modules=3,
|
699 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
700 |
+
stage4_num_channels=[18, 36, 72, 144],
|
701 |
+
**kwargs)
|
702 |
+
return model
|
703 |
+
|
704 |
+
|
705 |
+
@manager.BACKBONES.add_component
|
706 |
+
def HRNet_W30(**kwargs):
|
707 |
+
model = HRNet(
|
708 |
+
stage1_num_modules=1,
|
709 |
+
stage1_num_blocks=[4],
|
710 |
+
stage1_num_channels=[64],
|
711 |
+
stage2_num_modules=1,
|
712 |
+
stage2_num_blocks=[4, 4],
|
713 |
+
stage2_num_channels=[30, 60],
|
714 |
+
stage3_num_modules=4,
|
715 |
+
stage3_num_blocks=[4, 4, 4],
|
716 |
+
stage3_num_channels=[30, 60, 120],
|
717 |
+
stage4_num_modules=3,
|
718 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
719 |
+
stage4_num_channels=[30, 60, 120, 240],
|
720 |
+
**kwargs)
|
721 |
+
return model
|
722 |
+
|
723 |
+
|
724 |
+
@manager.BACKBONES.add_component
|
725 |
+
def HRNet_W32(**kwargs):
|
726 |
+
model = HRNet(
|
727 |
+
stage1_num_modules=1,
|
728 |
+
stage1_num_blocks=[4],
|
729 |
+
stage1_num_channels=[64],
|
730 |
+
stage2_num_modules=1,
|
731 |
+
stage2_num_blocks=[4, 4],
|
732 |
+
stage2_num_channels=[32, 64],
|
733 |
+
stage3_num_modules=4,
|
734 |
+
stage3_num_blocks=[4, 4, 4],
|
735 |
+
stage3_num_channels=[32, 64, 128],
|
736 |
+
stage4_num_modules=3,
|
737 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
738 |
+
stage4_num_channels=[32, 64, 128, 256],
|
739 |
+
**kwargs)
|
740 |
+
return model
|
741 |
+
|
742 |
+
|
743 |
+
@manager.BACKBONES.add_component
|
744 |
+
def HRNet_W40(**kwargs):
|
745 |
+
model = HRNet(
|
746 |
+
stage1_num_modules=1,
|
747 |
+
stage1_num_blocks=[4],
|
748 |
+
stage1_num_channels=[64],
|
749 |
+
stage2_num_modules=1,
|
750 |
+
stage2_num_blocks=[4, 4],
|
751 |
+
stage2_num_channels=[40, 80],
|
752 |
+
stage3_num_modules=4,
|
753 |
+
stage3_num_blocks=[4, 4, 4],
|
754 |
+
stage3_num_channels=[40, 80, 160],
|
755 |
+
stage4_num_modules=3,
|
756 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
757 |
+
stage4_num_channels=[40, 80, 160, 320],
|
758 |
+
**kwargs)
|
759 |
+
return model
|
760 |
+
|
761 |
+
|
762 |
+
@manager.BACKBONES.add_component
|
763 |
+
def HRNet_W44(**kwargs):
|
764 |
+
model = HRNet(
|
765 |
+
stage1_num_modules=1,
|
766 |
+
stage1_num_blocks=[4],
|
767 |
+
stage1_num_channels=[64],
|
768 |
+
stage2_num_modules=1,
|
769 |
+
stage2_num_blocks=[4, 4],
|
770 |
+
stage2_num_channels=[44, 88],
|
771 |
+
stage3_num_modules=4,
|
772 |
+
stage3_num_blocks=[4, 4, 4],
|
773 |
+
stage3_num_channels=[44, 88, 176],
|
774 |
+
stage4_num_modules=3,
|
775 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
776 |
+
stage4_num_channels=[44, 88, 176, 352],
|
777 |
+
**kwargs)
|
778 |
+
return model
|
779 |
+
|
780 |
+
|
781 |
+
@manager.BACKBONES.add_component
|
782 |
+
def HRNet_W48(**kwargs):
|
783 |
+
model = HRNet(
|
784 |
+
stage1_num_modules=1,
|
785 |
+
stage1_num_blocks=[4],
|
786 |
+
stage1_num_channels=[64],
|
787 |
+
stage2_num_modules=1,
|
788 |
+
stage2_num_blocks=[4, 4],
|
789 |
+
stage2_num_channels=[48, 96],
|
790 |
+
stage3_num_modules=4,
|
791 |
+
stage3_num_blocks=[4, 4, 4],
|
792 |
+
stage3_num_channels=[48, 96, 192],
|
793 |
+
stage4_num_modules=3,
|
794 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
795 |
+
stage4_num_channels=[48, 96, 192, 384],
|
796 |
+
**kwargs)
|
797 |
+
return model
|
798 |
+
|
799 |
+
|
800 |
+
@manager.BACKBONES.add_component
|
801 |
+
def HRNet_W60(**kwargs):
|
802 |
+
model = HRNet(
|
803 |
+
stage1_num_modules=1,
|
804 |
+
stage1_num_blocks=[4],
|
805 |
+
stage1_num_channels=[64],
|
806 |
+
stage2_num_modules=1,
|
807 |
+
stage2_num_blocks=[4, 4],
|
808 |
+
stage2_num_channels=[60, 120],
|
809 |
+
stage3_num_modules=4,
|
810 |
+
stage3_num_blocks=[4, 4, 4],
|
811 |
+
stage3_num_channels=[60, 120, 240],
|
812 |
+
stage4_num_modules=3,
|
813 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
814 |
+
stage4_num_channels=[60, 120, 240, 480],
|
815 |
+
**kwargs)
|
816 |
+
return model
|
817 |
+
|
818 |
+
|
819 |
+
@manager.BACKBONES.add_component
|
820 |
+
def HRNet_W64(**kwargs):
|
821 |
+
model = HRNet(
|
822 |
+
stage1_num_modules=1,
|
823 |
+
stage1_num_blocks=[4],
|
824 |
+
stage1_num_channels=[64],
|
825 |
+
stage2_num_modules=1,
|
826 |
+
stage2_num_blocks=[4, 4],
|
827 |
+
stage2_num_channels=[64, 128],
|
828 |
+
stage3_num_modules=4,
|
829 |
+
stage3_num_blocks=[4, 4, 4],
|
830 |
+
stage3_num_channels=[64, 128, 256],
|
831 |
+
stage4_num_modules=3,
|
832 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
833 |
+
stage4_num_channels=[64, 128, 256, 512],
|
834 |
+
**kwargs)
|
835 |
+
return model
|
matting/model/loss.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import paddle
|
16 |
+
import paddle.nn as nn
|
17 |
+
import paddle.nn.functional as F
|
18 |
+
|
19 |
+
from paddleseg.cvlibs import manager
|
20 |
+
|
21 |
+
|
22 |
+
@manager.LOSSES.add_component
|
23 |
+
class MRSD(nn.Layer):
|
24 |
+
def __init__(self, eps=1e-6):
|
25 |
+
super().__init__()
|
26 |
+
self.eps = eps
|
27 |
+
|
28 |
+
def forward(self, logit, label, mask=None):
|
29 |
+
"""
|
30 |
+
Forward computation.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
logit (Tensor): Logit tensor, the data type is float32, float64.
|
34 |
+
label (Tensor): Label tensor, the data type is float32, float64. The shape should equal to logit.
|
35 |
+
mask (Tensor, optional): The mask where the loss valid. Default: None.
|
36 |
+
"""
|
37 |
+
if len(label.shape) == 3:
|
38 |
+
label = label.unsqueeze(1)
|
39 |
+
sd = paddle.square(logit - label)
|
40 |
+
loss = paddle.sqrt(sd + self.eps)
|
41 |
+
if mask is not None:
|
42 |
+
mask = mask.astype('float32')
|
43 |
+
if len(mask.shape) == 3:
|
44 |
+
mask = mask.unsqueeze(1)
|
45 |
+
loss = loss * mask
|
46 |
+
loss = loss.sum() / (mask.sum() + self.eps)
|
47 |
+
mask.stop_gradient = True
|
48 |
+
else:
|
49 |
+
loss = loss.mean()
|
50 |
+
|
51 |
+
return loss
|
matting/model/mobilenet_v2.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import paddle
|
19 |
+
from paddle import ParamAttr
|
20 |
+
import paddle.nn as nn
|
21 |
+
import paddle.nn.functional as F
|
22 |
+
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
23 |
+
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
24 |
+
|
25 |
+
from paddleseg import utils
|
26 |
+
from paddleseg.cvlibs import manager
|
27 |
+
|
28 |
+
MODEL_URLS = {
|
29 |
+
"MobileNetV2_x0_25":
|
30 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams",
|
31 |
+
"MobileNetV2_x0_5":
|
32 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams",
|
33 |
+
"MobileNetV2_x0_75":
|
34 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams",
|
35 |
+
"MobileNetV2":
|
36 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams",
|
37 |
+
"MobileNetV2_x1_5":
|
38 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams",
|
39 |
+
"MobileNetV2_x2_0":
|
40 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams"
|
41 |
+
}
|
42 |
+
|
43 |
+
__all__ = ["MobileNetV2"]
|
44 |
+
|
45 |
+
|
46 |
+
class ConvBNLayer(nn.Layer):
|
47 |
+
def __init__(self,
|
48 |
+
num_channels,
|
49 |
+
filter_size,
|
50 |
+
num_filters,
|
51 |
+
stride,
|
52 |
+
padding,
|
53 |
+
channels=None,
|
54 |
+
num_groups=1,
|
55 |
+
name=None,
|
56 |
+
use_cudnn=True):
|
57 |
+
super(ConvBNLayer, self).__init__()
|
58 |
+
|
59 |
+
self._conv = Conv2D(
|
60 |
+
in_channels=num_channels,
|
61 |
+
out_channels=num_filters,
|
62 |
+
kernel_size=filter_size,
|
63 |
+
stride=stride,
|
64 |
+
padding=padding,
|
65 |
+
groups=num_groups,
|
66 |
+
weight_attr=ParamAttr(name=name + "_weights"),
|
67 |
+
bias_attr=False)
|
68 |
+
|
69 |
+
self._batch_norm = BatchNorm(
|
70 |
+
num_filters,
|
71 |
+
param_attr=ParamAttr(name=name + "_bn_scale"),
|
72 |
+
bias_attr=ParamAttr(name=name + "_bn_offset"),
|
73 |
+
moving_mean_name=name + "_bn_mean",
|
74 |
+
moving_variance_name=name + "_bn_variance")
|
75 |
+
|
76 |
+
def forward(self, inputs, if_act=True):
|
77 |
+
y = self._conv(inputs)
|
78 |
+
y = self._batch_norm(y)
|
79 |
+
if if_act:
|
80 |
+
y = F.relu6(y)
|
81 |
+
return y
|
82 |
+
|
83 |
+
|
84 |
+
class InvertedResidualUnit(nn.Layer):
|
85 |
+
def __init__(self, num_channels, num_in_filter, num_filters, stride,
|
86 |
+
filter_size, padding, expansion_factor, name):
|
87 |
+
super(InvertedResidualUnit, self).__init__()
|
88 |
+
num_expfilter = int(round(num_in_filter * expansion_factor))
|
89 |
+
self._expand_conv = ConvBNLayer(
|
90 |
+
num_channels=num_channels,
|
91 |
+
num_filters=num_expfilter,
|
92 |
+
filter_size=1,
|
93 |
+
stride=1,
|
94 |
+
padding=0,
|
95 |
+
num_groups=1,
|
96 |
+
name=name + "_expand")
|
97 |
+
|
98 |
+
self._bottleneck_conv = ConvBNLayer(
|
99 |
+
num_channels=num_expfilter,
|
100 |
+
num_filters=num_expfilter,
|
101 |
+
filter_size=filter_size,
|
102 |
+
stride=stride,
|
103 |
+
padding=padding,
|
104 |
+
num_groups=num_expfilter,
|
105 |
+
use_cudnn=False,
|
106 |
+
name=name + "_dwise")
|
107 |
+
|
108 |
+
self._linear_conv = ConvBNLayer(
|
109 |
+
num_channels=num_expfilter,
|
110 |
+
num_filters=num_filters,
|
111 |
+
filter_size=1,
|
112 |
+
stride=1,
|
113 |
+
padding=0,
|
114 |
+
num_groups=1,
|
115 |
+
name=name + "_linear")
|
116 |
+
|
117 |
+
def forward(self, inputs, ifshortcut):
|
118 |
+
y = self._expand_conv(inputs, if_act=True)
|
119 |
+
y = self._bottleneck_conv(y, if_act=True)
|
120 |
+
y = self._linear_conv(y, if_act=False)
|
121 |
+
if ifshortcut:
|
122 |
+
y = paddle.add(inputs, y)
|
123 |
+
return y
|
124 |
+
|
125 |
+
|
126 |
+
class InvresiBlocks(nn.Layer):
|
127 |
+
def __init__(self, in_c, t, c, n, s, name):
|
128 |
+
super(InvresiBlocks, self).__init__()
|
129 |
+
|
130 |
+
self._first_block = InvertedResidualUnit(
|
131 |
+
num_channels=in_c,
|
132 |
+
num_in_filter=in_c,
|
133 |
+
num_filters=c,
|
134 |
+
stride=s,
|
135 |
+
filter_size=3,
|
136 |
+
padding=1,
|
137 |
+
expansion_factor=t,
|
138 |
+
name=name + "_1")
|
139 |
+
|
140 |
+
self._block_list = []
|
141 |
+
for i in range(1, n):
|
142 |
+
block = self.add_sublayer(
|
143 |
+
name + "_" + str(i + 1),
|
144 |
+
sublayer=InvertedResidualUnit(
|
145 |
+
num_channels=c,
|
146 |
+
num_in_filter=c,
|
147 |
+
num_filters=c,
|
148 |
+
stride=1,
|
149 |
+
filter_size=3,
|
150 |
+
padding=1,
|
151 |
+
expansion_factor=t,
|
152 |
+
name=name + "_" + str(i + 1)))
|
153 |
+
self._block_list.append(block)
|
154 |
+
|
155 |
+
def forward(self, inputs):
|
156 |
+
y = self._first_block(inputs, ifshortcut=False)
|
157 |
+
for block in self._block_list:
|
158 |
+
y = block(y, ifshortcut=True)
|
159 |
+
return y
|
160 |
+
|
161 |
+
|
162 |
+
class MobileNet(nn.Layer):
|
163 |
+
def __init__(self,
|
164 |
+
input_channels=3,
|
165 |
+
scale=1.0,
|
166 |
+
pretrained=None,
|
167 |
+
prefix_name=""):
|
168 |
+
super(MobileNet, self).__init__()
|
169 |
+
self.scale = scale
|
170 |
+
|
171 |
+
bottleneck_params_list = [
|
172 |
+
(1, 16, 1, 1),
|
173 |
+
(6, 24, 2, 2),
|
174 |
+
(6, 32, 3, 2),
|
175 |
+
(6, 64, 4, 2),
|
176 |
+
(6, 96, 3, 1),
|
177 |
+
(6, 160, 3, 2),
|
178 |
+
(6, 320, 1, 1),
|
179 |
+
]
|
180 |
+
|
181 |
+
self.conv1 = ConvBNLayer(
|
182 |
+
num_channels=input_channels,
|
183 |
+
num_filters=int(32 * scale),
|
184 |
+
filter_size=3,
|
185 |
+
stride=2,
|
186 |
+
padding=1,
|
187 |
+
name=prefix_name + "conv1_1")
|
188 |
+
|
189 |
+
self.block_list = []
|
190 |
+
i = 1
|
191 |
+
in_c = int(32 * scale)
|
192 |
+
for layer_setting in bottleneck_params_list:
|
193 |
+
t, c, n, s = layer_setting
|
194 |
+
i += 1
|
195 |
+
block = self.add_sublayer(
|
196 |
+
prefix_name + "conv" + str(i),
|
197 |
+
sublayer=InvresiBlocks(
|
198 |
+
in_c=in_c,
|
199 |
+
t=t,
|
200 |
+
c=int(c * scale),
|
201 |
+
n=n,
|
202 |
+
s=s,
|
203 |
+
name=prefix_name + "conv" + str(i)))
|
204 |
+
self.block_list.append(block)
|
205 |
+
in_c = int(c * scale)
|
206 |
+
|
207 |
+
self.out_c = int(1280 * scale) if scale > 1.0 else 1280
|
208 |
+
self.conv9 = ConvBNLayer(
|
209 |
+
num_channels=in_c,
|
210 |
+
num_filters=self.out_c,
|
211 |
+
filter_size=1,
|
212 |
+
stride=1,
|
213 |
+
padding=0,
|
214 |
+
name=prefix_name + "conv9")
|
215 |
+
|
216 |
+
self.feat_channels = [int(i * scale) for i in [16, 24, 32, 96, 1280]]
|
217 |
+
self.pretrained = pretrained
|
218 |
+
self.init_weight()
|
219 |
+
|
220 |
+
def forward(self, inputs):
|
221 |
+
feat_list = []
|
222 |
+
y = self.conv1(inputs, if_act=True)
|
223 |
+
|
224 |
+
block_index = 0
|
225 |
+
for block in self.block_list:
|
226 |
+
y = block(y)
|
227 |
+
if block_index in [0, 1, 2, 4]:
|
228 |
+
feat_list.append(y)
|
229 |
+
block_index += 1
|
230 |
+
y = self.conv9(y, if_act=True)
|
231 |
+
feat_list.append(y)
|
232 |
+
return feat_list
|
233 |
+
|
234 |
+
def init_weight(self):
|
235 |
+
utils.load_pretrained_model(self, self.pretrained)
|
236 |
+
|
237 |
+
|
238 |
+
@manager.BACKBONES.add_component
|
239 |
+
def MobileNetV2(**kwargs):
|
240 |
+
model = MobileNet(scale=1.0, **kwargs)
|
241 |
+
return model
|
matting/model/modnet.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# you may not use this file except in compliance with the License.
|
2 |
+
# You may obtain a copy of the License at
|
3 |
+
#
|
4 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
5 |
+
#
|
6 |
+
# Unless required by applicable law or agreed to in writing, software
|
7 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9 |
+
# See the License for the specific language governing permissions and
|
10 |
+
# limitations under the License.
|
11 |
+
|
12 |
+
from collections import defaultdict
|
13 |
+
|
14 |
+
import paddle
|
15 |
+
import paddle.nn as nn
|
16 |
+
import paddle.nn.functional as F
|
17 |
+
import paddleseg
|
18 |
+
from paddleseg.models import layers, losses
|
19 |
+
from paddleseg import utils
|
20 |
+
from paddleseg.cvlibs import manager, param_init
|
21 |
+
import numpy as np
|
22 |
+
import scipy
|
23 |
+
|
24 |
+
|
25 |
+
@manager.MODELS.add_component
|
26 |
+
class MODNet(nn.Layer):
|
27 |
+
"""
|
28 |
+
The MODNet implementation based on PaddlePaddle.
|
29 |
+
|
30 |
+
The original article refers to
|
31 |
+
Zhanghan Ke, et, al. "Is a Green Screen Really Necessary for Real-Time Portrait Matting?"
|
32 |
+
(https://arxiv.org/pdf/2011.11961.pdf).
|
33 |
+
|
34 |
+
Args:
|
35 |
+
backbone: backbone model.
|
36 |
+
hr(int, optional): The channels of high resolutions branch. Defautl: None.
|
37 |
+
pretrained(str, optional): The path of pretrianed model. Defautl: None.
|
38 |
+
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, backbone, hr_channels=32, pretrained=None):
|
42 |
+
super().__init__()
|
43 |
+
self.backbone = backbone
|
44 |
+
self.pretrained = pretrained
|
45 |
+
|
46 |
+
self.head = MODNetHead(
|
47 |
+
hr_channels=hr_channels, backbone_channels=backbone.feat_channels)
|
48 |
+
self.init_weight()
|
49 |
+
self.blurer = GaussianBlurLayer(1, 3)
|
50 |
+
|
51 |
+
def forward(self, inputs):
|
52 |
+
"""
|
53 |
+
If training, return a dict.
|
54 |
+
If evaluation, return the final alpha prediction.
|
55 |
+
"""
|
56 |
+
x = inputs['img']
|
57 |
+
feat_list = self.backbone(x)
|
58 |
+
y = self.head(inputs=inputs, feat_list=feat_list)
|
59 |
+
|
60 |
+
return y
|
61 |
+
|
62 |
+
def loss(self, logit_dict, label_dict, loss_func_dict=None):
|
63 |
+
if loss_func_dict is None:
|
64 |
+
loss_func_dict = defaultdict(list)
|
65 |
+
loss_func_dict['semantic'].append(paddleseg.models.MSELoss())
|
66 |
+
loss_func_dict['detail'].append(paddleseg.models.L1Loss())
|
67 |
+
loss_func_dict['fusion'].append(paddleseg.models.L1Loss())
|
68 |
+
loss_func_dict['fusion'].append(paddleseg.models.L1Loss())
|
69 |
+
|
70 |
+
loss = {}
|
71 |
+
# semantic loss
|
72 |
+
semantic_gt = F.interpolate(
|
73 |
+
label_dict['alpha'],
|
74 |
+
scale_factor=1 / 16,
|
75 |
+
mode='bilinear',
|
76 |
+
align_corners=False)
|
77 |
+
semantic_gt = self.blurer(semantic_gt)
|
78 |
+
# semantic_gt.stop_gradient=True
|
79 |
+
loss['semantic'] = loss_func_dict['semantic'][0](logit_dict['semantic'],
|
80 |
+
semantic_gt)
|
81 |
+
|
82 |
+
# detail loss
|
83 |
+
trimap = label_dict['trimap']
|
84 |
+
mask = (trimap == 128).astype('float32')
|
85 |
+
logit_detail = logit_dict['detail'] * mask
|
86 |
+
label_detail = label_dict['alpha'] * mask
|
87 |
+
loss_detail = loss_func_dict['detail'][0](logit_detail, label_detail)
|
88 |
+
loss_detail = loss_detail / (mask.mean() + 1e-6)
|
89 |
+
loss['detail'] = 10 * loss_detail
|
90 |
+
|
91 |
+
# fusion loss
|
92 |
+
matte = logit_dict['matte']
|
93 |
+
alpha = label_dict['alpha']
|
94 |
+
transition_mask = label_dict['trimap'] == 128
|
95 |
+
matte_boundary = paddle.where(transition_mask, matte, alpha)
|
96 |
+
# l1 loss
|
97 |
+
loss_fusion_l1 = loss_func_dict['fusion'][0](
|
98 |
+
matte,
|
99 |
+
alpha) + 4 * loss_func_dict['fusion'][0](matte_boundary, alpha)
|
100 |
+
# composition loss
|
101 |
+
loss_fusion_comp = loss_func_dict['fusion'][1](
|
102 |
+
matte * label_dict['img'],
|
103 |
+
alpha * label_dict['img']) + 4 * loss_func_dict['fusion'][1](
|
104 |
+
matte_boundary * label_dict['img'], alpha * label_dict['img'])
|
105 |
+
# consisten loss with semantic
|
106 |
+
transition_mask = F.interpolate(
|
107 |
+
label_dict['trimap'],
|
108 |
+
scale_factor=1 / 16,
|
109 |
+
mode='nearest',
|
110 |
+
align_corners=False)
|
111 |
+
transition_mask = transition_mask == 128
|
112 |
+
matte_con_sem = F.interpolate(
|
113 |
+
matte, scale_factor=1 / 16, mode='bilinear', align_corners=False)
|
114 |
+
matte_con_sem = self.blurer(matte_con_sem)
|
115 |
+
logit_semantic = logit_dict['semantic'].clone()
|
116 |
+
logit_semantic.stop_gradient = True
|
117 |
+
matte_con_sem = paddle.where(transition_mask, logit_semantic,
|
118 |
+
matte_con_sem)
|
119 |
+
if False:
|
120 |
+
import cv2
|
121 |
+
matte_con_sem_num = matte_con_sem.numpy()
|
122 |
+
matte_con_sem_num = matte_con_sem_num[0].squeeze()
|
123 |
+
matte_con_sem_num = (matte_con_sem_num * 255).astype('uint8')
|
124 |
+
semantic = logit_dict['semantic'].numpy()
|
125 |
+
semantic = semantic[0].squeeze()
|
126 |
+
semantic = (semantic * 255).astype('uint8')
|
127 |
+
transition_mask = transition_mask.astype('uint8')
|
128 |
+
transition_mask = transition_mask.numpy()
|
129 |
+
transition_mask = (transition_mask[0].squeeze()) * 255
|
130 |
+
cv2.imwrite('matte_con.png', matte_con_sem_num)
|
131 |
+
cv2.imwrite('semantic.png', semantic)
|
132 |
+
cv2.imwrite('transition.png', transition_mask)
|
133 |
+
mse_loss = paddleseg.models.MSELoss()
|
134 |
+
loss_fusion_con_sem = mse_loss(matte_con_sem, logit_dict['semantic'])
|
135 |
+
loss_fusion = loss_fusion_l1 + loss_fusion_comp + loss_fusion_con_sem
|
136 |
+
loss['fusion'] = loss_fusion
|
137 |
+
loss['fusion_l1'] = loss_fusion_l1
|
138 |
+
loss['fusion_comp'] = loss_fusion_comp
|
139 |
+
loss['fusion_con_sem'] = loss_fusion_con_sem
|
140 |
+
|
141 |
+
loss['all'] = loss['semantic'] + loss['detail'] + loss['fusion']
|
142 |
+
|
143 |
+
return loss
|
144 |
+
|
145 |
+
def init_weight(self):
|
146 |
+
if self.pretrained is not None:
|
147 |
+
utils.load_entire_model(self, self.pretrained)
|
148 |
+
|
149 |
+
|
150 |
+
class MODNetHead(nn.Layer):
|
151 |
+
def __init__(self, hr_channels, backbone_channels):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
self.lr_branch = LRBranch(backbone_channels)
|
155 |
+
self.hr_branch = HRBranch(hr_channels, backbone_channels)
|
156 |
+
self.f_branch = FusionBranch(hr_channels, backbone_channels)
|
157 |
+
self.init_weight()
|
158 |
+
|
159 |
+
def forward(self, inputs, feat_list):
|
160 |
+
pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(feat_list)
|
161 |
+
pred_detail, hr2x = self.hr_branch(inputs['img'], enc2x, enc4x, lr8x)
|
162 |
+
pred_matte = self.f_branch(inputs['img'], lr8x, hr2x)
|
163 |
+
|
164 |
+
if self.training:
|
165 |
+
logit_dict = {
|
166 |
+
'semantic': pred_semantic,
|
167 |
+
'detail': pred_detail,
|
168 |
+
'matte': pred_matte
|
169 |
+
}
|
170 |
+
return logit_dict
|
171 |
+
else:
|
172 |
+
return pred_matte
|
173 |
+
|
174 |
+
def init_weight(self):
|
175 |
+
for layer in self.sublayers():
|
176 |
+
if isinstance(layer, nn.Conv2D):
|
177 |
+
param_init.kaiming_uniform(layer.weight)
|
178 |
+
|
179 |
+
|
180 |
+
class FusionBranch(nn.Layer):
|
181 |
+
def __init__(self, hr_channels, enc_channels):
|
182 |
+
super().__init__()
|
183 |
+
self.conv_lr4x = Conv2dIBNormRelu(
|
184 |
+
enc_channels[2], hr_channels, 5, stride=1, padding=2)
|
185 |
+
|
186 |
+
self.conv_f2x = Conv2dIBNormRelu(
|
187 |
+
2 * hr_channels, hr_channels, 3, stride=1, padding=1)
|
188 |
+
self.conv_f = nn.Sequential(
|
189 |
+
Conv2dIBNormRelu(
|
190 |
+
hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
|
191 |
+
Conv2dIBNormRelu(
|
192 |
+
int(hr_channels / 2),
|
193 |
+
1,
|
194 |
+
1,
|
195 |
+
stride=1,
|
196 |
+
padding=0,
|
197 |
+
with_ibn=False,
|
198 |
+
with_relu=False))
|
199 |
+
|
200 |
+
def forward(self, img, lr8x, hr2x):
|
201 |
+
lr4x = F.interpolate(
|
202 |
+
lr8x, scale_factor=2, mode='bilinear', align_corners=False)
|
203 |
+
lr4x = self.conv_lr4x(lr4x)
|
204 |
+
lr2x = F.interpolate(
|
205 |
+
lr4x, scale_factor=2, mode='bilinear', align_corners=False)
|
206 |
+
|
207 |
+
f2x = self.conv_f2x(paddle.concat((lr2x, hr2x), axis=1))
|
208 |
+
f = F.interpolate(
|
209 |
+
f2x, scale_factor=2, mode='bilinear', align_corners=False)
|
210 |
+
f = self.conv_f(paddle.concat((f, img), axis=1))
|
211 |
+
pred_matte = F.sigmoid(f)
|
212 |
+
|
213 |
+
return pred_matte
|
214 |
+
|
215 |
+
|
216 |
+
class HRBranch(nn.Layer):
|
217 |
+
"""
|
218 |
+
High Resolution Branch of MODNet
|
219 |
+
"""
|
220 |
+
|
221 |
+
def __init__(self, hr_channels, enc_channels):
|
222 |
+
super().__init__()
|
223 |
+
|
224 |
+
self.tohr_enc2x = Conv2dIBNormRelu(
|
225 |
+
enc_channels[0], hr_channels, 1, stride=1, padding=0)
|
226 |
+
self.conv_enc2x = Conv2dIBNormRelu(
|
227 |
+
hr_channels + 3, hr_channels, 3, stride=2, padding=1)
|
228 |
+
|
229 |
+
self.tohr_enc4x = Conv2dIBNormRelu(
|
230 |
+
enc_channels[1], hr_channels, 1, stride=1, padding=0)
|
231 |
+
self.conv_enc4x = Conv2dIBNormRelu(
|
232 |
+
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
|
233 |
+
|
234 |
+
self.conv_hr4x = nn.Sequential(
|
235 |
+
Conv2dIBNormRelu(
|
236 |
+
2 * hr_channels + enc_channels[2] + 3,
|
237 |
+
2 * hr_channels,
|
238 |
+
3,
|
239 |
+
stride=1,
|
240 |
+
padding=1),
|
241 |
+
Conv2dIBNormRelu(
|
242 |
+
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
|
243 |
+
Conv2dIBNormRelu(
|
244 |
+
2 * hr_channels, hr_channels, 3, stride=1, padding=1))
|
245 |
+
|
246 |
+
self.conv_hr2x = nn.Sequential(
|
247 |
+
Conv2dIBNormRelu(
|
248 |
+
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
|
249 |
+
Conv2dIBNormRelu(
|
250 |
+
2 * hr_channels, hr_channels, 3, stride=1, padding=1),
|
251 |
+
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
|
252 |
+
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1))
|
253 |
+
|
254 |
+
self.conv_hr = nn.Sequential(
|
255 |
+
Conv2dIBNormRelu(
|
256 |
+
hr_channels + 3, hr_channels, 3, stride=1, padding=1),
|
257 |
+
Conv2dIBNormRelu(
|
258 |
+
hr_channels,
|
259 |
+
1,
|
260 |
+
1,
|
261 |
+
stride=1,
|
262 |
+
padding=0,
|
263 |
+
with_ibn=False,
|
264 |
+
with_relu=False))
|
265 |
+
|
266 |
+
def forward(self, img, enc2x, enc4x, lr8x):
|
267 |
+
img2x = F.interpolate(
|
268 |
+
img, scale_factor=1 / 2, mode='bilinear', align_corners=False)
|
269 |
+
img4x = F.interpolate(
|
270 |
+
img, scale_factor=1 / 4, mode='bilinear', align_corners=False)
|
271 |
+
|
272 |
+
enc2x = self.tohr_enc2x(enc2x)
|
273 |
+
hr4x = self.conv_enc2x(paddle.concat((img2x, enc2x), axis=1))
|
274 |
+
|
275 |
+
enc4x = self.tohr_enc4x(enc4x)
|
276 |
+
hr4x = self.conv_enc4x(paddle.concat((hr4x, enc4x), axis=1))
|
277 |
+
|
278 |
+
lr4x = F.interpolate(
|
279 |
+
lr8x, scale_factor=2, mode='bilinear', align_corners=False)
|
280 |
+
hr4x = self.conv_hr4x(paddle.concat((hr4x, lr4x, img4x), axis=1))
|
281 |
+
|
282 |
+
hr2x = F.interpolate(
|
283 |
+
hr4x, scale_factor=2, mode='bilinear', align_corners=False)
|
284 |
+
hr2x = self.conv_hr2x(paddle.concat((hr2x, enc2x), axis=1))
|
285 |
+
|
286 |
+
pred_detail = None
|
287 |
+
if self.training:
|
288 |
+
hr = F.interpolate(
|
289 |
+
hr2x, scale_factor=2, mode='bilinear', align_corners=False)
|
290 |
+
hr = self.conv_hr(paddle.concat((hr, img), axis=1))
|
291 |
+
pred_detail = F.sigmoid(hr)
|
292 |
+
|
293 |
+
return pred_detail, hr2x
|
294 |
+
|
295 |
+
|
296 |
+
class LRBranch(nn.Layer):
|
297 |
+
def __init__(self, backbone_channels):
|
298 |
+
super().__init__()
|
299 |
+
self.se_block = SEBlock(backbone_channels[4], reduction=4)
|
300 |
+
self.conv_lr16x = Conv2dIBNormRelu(
|
301 |
+
backbone_channels[4], backbone_channels[3], 5, stride=1, padding=2)
|
302 |
+
self.conv_lr8x = Conv2dIBNormRelu(
|
303 |
+
backbone_channels[3], backbone_channels[2], 5, stride=1, padding=2)
|
304 |
+
self.conv_lr = Conv2dIBNormRelu(
|
305 |
+
backbone_channels[2],
|
306 |
+
1,
|
307 |
+
3,
|
308 |
+
stride=2,
|
309 |
+
padding=1,
|
310 |
+
with_ibn=False,
|
311 |
+
with_relu=False)
|
312 |
+
|
313 |
+
def forward(self, feat_list):
|
314 |
+
enc2x, enc4x, enc32x = feat_list[0], feat_list[1], feat_list[4]
|
315 |
+
|
316 |
+
enc32x = self.se_block(enc32x)
|
317 |
+
lr16x = F.interpolate(
|
318 |
+
enc32x, scale_factor=2, mode='bilinear', align_corners=False)
|
319 |
+
lr16x = self.conv_lr16x(lr16x)
|
320 |
+
lr8x = F.interpolate(
|
321 |
+
lr16x, scale_factor=2, mode='bilinear', align_corners=False)
|
322 |
+
lr8x = self.conv_lr8x(lr8x)
|
323 |
+
|
324 |
+
pred_semantic = None
|
325 |
+
if self.training:
|
326 |
+
lr = self.conv_lr(lr8x)
|
327 |
+
pred_semantic = F.sigmoid(lr)
|
328 |
+
|
329 |
+
return pred_semantic, lr8x, [enc2x, enc4x]
|
330 |
+
|
331 |
+
|
332 |
+
class IBNorm(nn.Layer):
|
333 |
+
"""
|
334 |
+
Combine Instance Norm and Batch Norm into One Layer
|
335 |
+
"""
|
336 |
+
|
337 |
+
def __init__(self, in_channels):
|
338 |
+
super().__init__()
|
339 |
+
self.bnorm_channels = in_channels // 2
|
340 |
+
self.inorm_channels = in_channels - self.bnorm_channels
|
341 |
+
|
342 |
+
self.bnorm = nn.BatchNorm2D(self.bnorm_channels)
|
343 |
+
self.inorm = nn.InstanceNorm2D(self.inorm_channels)
|
344 |
+
|
345 |
+
def forward(self, x):
|
346 |
+
bn_x = self.bnorm(x[:, :self.bnorm_channels, :, :])
|
347 |
+
in_x = self.inorm(x[:, self.bnorm_channels:, :, :])
|
348 |
+
|
349 |
+
return paddle.concat((bn_x, in_x), 1)
|
350 |
+
|
351 |
+
|
352 |
+
class Conv2dIBNormRelu(nn.Layer):
|
353 |
+
"""
|
354 |
+
Convolution + IBNorm + Relu
|
355 |
+
"""
|
356 |
+
|
357 |
+
def __init__(self,
|
358 |
+
in_channels,
|
359 |
+
out_channels,
|
360 |
+
kernel_size,
|
361 |
+
stride=1,
|
362 |
+
padding=0,
|
363 |
+
dilation=1,
|
364 |
+
groups=1,
|
365 |
+
bias_attr=None,
|
366 |
+
with_ibn=True,
|
367 |
+
with_relu=True):
|
368 |
+
|
369 |
+
super().__init__()
|
370 |
+
|
371 |
+
layers = [
|
372 |
+
nn.Conv2D(
|
373 |
+
in_channels,
|
374 |
+
out_channels,
|
375 |
+
kernel_size,
|
376 |
+
stride=stride,
|
377 |
+
padding=padding,
|
378 |
+
dilation=dilation,
|
379 |
+
groups=groups,
|
380 |
+
bias_attr=bias_attr)
|
381 |
+
]
|
382 |
+
|
383 |
+
if with_ibn:
|
384 |
+
layers.append(IBNorm(out_channels))
|
385 |
+
|
386 |
+
if with_relu:
|
387 |
+
layers.append(nn.ReLU())
|
388 |
+
|
389 |
+
self.layers = nn.Sequential(*layers)
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
return self.layers(x)
|
393 |
+
|
394 |
+
|
395 |
+
class SEBlock(nn.Layer):
|
396 |
+
"""
|
397 |
+
SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
|
398 |
+
"""
|
399 |
+
|
400 |
+
def __init__(self, num_channels, reduction=1):
|
401 |
+
super().__init__()
|
402 |
+
self.pool = nn.AdaptiveAvgPool2D(1)
|
403 |
+
self.conv = nn.Sequential(
|
404 |
+
nn.Conv2D(
|
405 |
+
num_channels,
|
406 |
+
int(num_channels // reduction),
|
407 |
+
1,
|
408 |
+
bias_attr=False), nn.ReLU(),
|
409 |
+
nn.Conv2D(
|
410 |
+
int(num_channels // reduction),
|
411 |
+
num_channels,
|
412 |
+
1,
|
413 |
+
bias_attr=False), nn.Sigmoid())
|
414 |
+
|
415 |
+
def forward(self, x):
|
416 |
+
w = self.pool(x)
|
417 |
+
w = self.conv(w)
|
418 |
+
return w * x
|
419 |
+
|
420 |
+
|
421 |
+
class GaussianBlurLayer(nn.Layer):
|
422 |
+
""" Add Gaussian Blur to a 4D tensors
|
423 |
+
This layer takes a 4D tensor of {N, C, H, W} as input.
|
424 |
+
The Gaussian blur will be performed in given channel number (C) splitly.
|
425 |
+
"""
|
426 |
+
|
427 |
+
def __init__(self, channels, kernel_size):
|
428 |
+
"""
|
429 |
+
Args:
|
430 |
+
channels (int): Channel for input tensor
|
431 |
+
kernel_size (int): Size of the kernel used in blurring
|
432 |
+
"""
|
433 |
+
|
434 |
+
super(GaussianBlurLayer, self).__init__()
|
435 |
+
self.channels = channels
|
436 |
+
self.kernel_size = kernel_size
|
437 |
+
assert self.kernel_size % 2 != 0
|
438 |
+
|
439 |
+
self.op = nn.Sequential(
|
440 |
+
nn.Pad2D(int(self.kernel_size / 2), mode='reflect'),
|
441 |
+
nn.Conv2D(
|
442 |
+
channels,
|
443 |
+
channels,
|
444 |
+
self.kernel_size,
|
445 |
+
stride=1,
|
446 |
+
padding=0,
|
447 |
+
bias_attr=False,
|
448 |
+
groups=channels))
|
449 |
+
|
450 |
+
self._init_kernel()
|
451 |
+
self.op[1].weight.stop_gradient = True
|
452 |
+
|
453 |
+
def forward(self, x):
|
454 |
+
"""
|
455 |
+
Args:
|
456 |
+
x (paddle.Tensor): input 4D tensor
|
457 |
+
Returns:
|
458 |
+
paddle.Tensor: Blurred version of the input
|
459 |
+
"""
|
460 |
+
|
461 |
+
if not len(list(x.shape)) == 4:
|
462 |
+
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
|
463 |
+
exit()
|
464 |
+
elif not x.shape[1] == self.channels:
|
465 |
+
print('In \'GaussianBlurLayer\', the required channel ({0}) is'
|
466 |
+
'not the same as input ({1})\n'.format(
|
467 |
+
self.channels, x.shape[1]))
|
468 |
+
exit()
|
469 |
+
|
470 |
+
return self.op(x)
|
471 |
+
|
472 |
+
def _init_kernel(self):
|
473 |
+
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
|
474 |
+
|
475 |
+
n = np.zeros((self.kernel_size, self.kernel_size))
|
476 |
+
i = int(self.kernel_size / 2)
|
477 |
+
n[i, i] = 1
|
478 |
+
kernel = scipy.ndimage.gaussian_filter(n, sigma)
|
479 |
+
kernel = kernel.astype('float32')
|
480 |
+
kernel = kernel[np.newaxis, np.newaxis, :, :]
|
481 |
+
paddle.assign(kernel, self.op[1].weight)
|
matting/model/resnet_vd.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import paddle
|
16 |
+
import paddle.nn as nn
|
17 |
+
import paddle.nn.functional as F
|
18 |
+
|
19 |
+
from paddleseg.cvlibs import manager
|
20 |
+
from paddleseg.models import layers
|
21 |
+
from paddleseg.utils import utils
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
class ConvBNLayer(nn.Layer):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
in_channels,
|
32 |
+
out_channels,
|
33 |
+
kernel_size,
|
34 |
+
stride=1,
|
35 |
+
dilation=1,
|
36 |
+
groups=1,
|
37 |
+
is_vd_mode=False,
|
38 |
+
act=None,
|
39 |
+
):
|
40 |
+
super(ConvBNLayer, self).__init__()
|
41 |
+
|
42 |
+
self.is_vd_mode = is_vd_mode
|
43 |
+
self._pool2d_avg = nn.AvgPool2D(
|
44 |
+
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
45 |
+
self._conv = nn.Conv2D(
|
46 |
+
in_channels=in_channels,
|
47 |
+
out_channels=out_channels,
|
48 |
+
kernel_size=kernel_size,
|
49 |
+
stride=stride,
|
50 |
+
padding=(kernel_size - 1) // 2 if dilation == 1 else 0,
|
51 |
+
dilation=dilation,
|
52 |
+
groups=groups,
|
53 |
+
bias_attr=False)
|
54 |
+
|
55 |
+
self._batch_norm = layers.SyncBatchNorm(out_channels)
|
56 |
+
self._act_op = layers.Activation(act=act)
|
57 |
+
|
58 |
+
def forward(self, inputs):
|
59 |
+
if self.is_vd_mode:
|
60 |
+
inputs = self._pool2d_avg(inputs)
|
61 |
+
y = self._conv(inputs)
|
62 |
+
y = self._batch_norm(y)
|
63 |
+
y = self._act_op(y)
|
64 |
+
|
65 |
+
return y
|
66 |
+
|
67 |
+
|
68 |
+
class BottleneckBlock(nn.Layer):
|
69 |
+
def __init__(self,
|
70 |
+
in_channels,
|
71 |
+
out_channels,
|
72 |
+
stride,
|
73 |
+
shortcut=True,
|
74 |
+
if_first=False,
|
75 |
+
dilation=1):
|
76 |
+
super(BottleneckBlock, self).__init__()
|
77 |
+
|
78 |
+
self.conv0 = ConvBNLayer(
|
79 |
+
in_channels=in_channels,
|
80 |
+
out_channels=out_channels,
|
81 |
+
kernel_size=1,
|
82 |
+
act='relu')
|
83 |
+
|
84 |
+
self.dilation = dilation
|
85 |
+
|
86 |
+
self.conv1 = ConvBNLayer(
|
87 |
+
in_channels=out_channels,
|
88 |
+
out_channels=out_channels,
|
89 |
+
kernel_size=3,
|
90 |
+
stride=stride,
|
91 |
+
act='relu',
|
92 |
+
dilation=dilation)
|
93 |
+
self.conv2 = ConvBNLayer(
|
94 |
+
in_channels=out_channels,
|
95 |
+
out_channels=out_channels * 4,
|
96 |
+
kernel_size=1,
|
97 |
+
act=None)
|
98 |
+
|
99 |
+
if not shortcut:
|
100 |
+
self.short = ConvBNLayer(
|
101 |
+
in_channels=in_channels,
|
102 |
+
out_channels=out_channels * 4,
|
103 |
+
kernel_size=1,
|
104 |
+
stride=1,
|
105 |
+
is_vd_mode=False if if_first or stride == 1 else True)
|
106 |
+
|
107 |
+
self.shortcut = shortcut
|
108 |
+
|
109 |
+
def forward(self, inputs):
|
110 |
+
y = self.conv0(inputs)
|
111 |
+
|
112 |
+
####################################################################
|
113 |
+
# If given dilation rate > 1, using corresponding padding.
|
114 |
+
# The performance drops down without the follow padding.
|
115 |
+
if self.dilation > 1:
|
116 |
+
padding = self.dilation
|
117 |
+
y = F.pad(y, [padding, padding, padding, padding])
|
118 |
+
#####################################################################
|
119 |
+
|
120 |
+
conv1 = self.conv1(y)
|
121 |
+
conv2 = self.conv2(conv1)
|
122 |
+
|
123 |
+
if self.shortcut:
|
124 |
+
short = inputs
|
125 |
+
else:
|
126 |
+
short = self.short(inputs)
|
127 |
+
|
128 |
+
y = paddle.add(x=short, y=conv2)
|
129 |
+
y = F.relu(y)
|
130 |
+
return y
|
131 |
+
|
132 |
+
|
133 |
+
class BasicBlock(nn.Layer):
|
134 |
+
def __init__(self,
|
135 |
+
in_channels,
|
136 |
+
out_channels,
|
137 |
+
stride,
|
138 |
+
shortcut=True,
|
139 |
+
if_first=False):
|
140 |
+
super(BasicBlock, self).__init__()
|
141 |
+
self.stride = stride
|
142 |
+
self.conv0 = ConvBNLayer(
|
143 |
+
in_channels=in_channels,
|
144 |
+
out_channels=out_channels,
|
145 |
+
kernel_size=3,
|
146 |
+
stride=stride,
|
147 |
+
act='relu')
|
148 |
+
self.conv1 = ConvBNLayer(
|
149 |
+
in_channels=out_channels,
|
150 |
+
out_channels=out_channels,
|
151 |
+
kernel_size=3,
|
152 |
+
act=None)
|
153 |
+
|
154 |
+
if not shortcut:
|
155 |
+
self.short = ConvBNLayer(
|
156 |
+
in_channels=in_channels,
|
157 |
+
out_channels=out_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
is_vd_mode=False if if_first else True)
|
161 |
+
|
162 |
+
self.shortcut = shortcut
|
163 |
+
|
164 |
+
def forward(self, inputs):
|
165 |
+
y = self.conv0(inputs)
|
166 |
+
conv1 = self.conv1(y)
|
167 |
+
|
168 |
+
if self.shortcut:
|
169 |
+
short = inputs
|
170 |
+
else:
|
171 |
+
short = self.short(inputs)
|
172 |
+
y = paddle.add(x=short, y=conv1)
|
173 |
+
y = F.relu(y)
|
174 |
+
|
175 |
+
return y
|
176 |
+
|
177 |
+
|
178 |
+
class ResNet_vd(nn.Layer):
|
179 |
+
"""
|
180 |
+
The ResNet_vd implementation based on PaddlePaddle.
|
181 |
+
|
182 |
+
The original article refers to Jingdong
|
183 |
+
Tong He, et, al. "Bag of Tricks for Image Classification with Convolutional Neural Networks"
|
184 |
+
(https://arxiv.org/pdf/1812.01187.pdf).
|
185 |
+
|
186 |
+
Args:
|
187 |
+
layers (int, optional): The layers of ResNet_vd. The supported layers are (18, 34, 50, 101, 152, 200). Default: 50.
|
188 |
+
output_stride (int, optional): The stride of output features compared to input images. It is 8 or 16. Default: 8.
|
189 |
+
multi_grid (tuple|list, optional): The grid of stage4. Defult: (1, 1, 1).
|
190 |
+
pretrained (str, optional): The path of pretrained model.
|
191 |
+
|
192 |
+
"""
|
193 |
+
|
194 |
+
def __init__(self,
|
195 |
+
input_channels=3,
|
196 |
+
layers=50,
|
197 |
+
output_stride=32,
|
198 |
+
multi_grid=(1, 1, 1),
|
199 |
+
pretrained=None):
|
200 |
+
super(ResNet_vd, self).__init__()
|
201 |
+
|
202 |
+
self.conv1_logit = None # for gscnn shape stream
|
203 |
+
self.layers = layers
|
204 |
+
supported_layers = [18, 34, 50, 101, 152, 200]
|
205 |
+
assert layers in supported_layers, \
|
206 |
+
"supported layers are {} but input layer is {}".format(
|
207 |
+
supported_layers, layers)
|
208 |
+
|
209 |
+
if layers == 18:
|
210 |
+
depth = [2, 2, 2, 2]
|
211 |
+
elif layers == 34 or layers == 50:
|
212 |
+
depth = [3, 4, 6, 3]
|
213 |
+
elif layers == 101:
|
214 |
+
depth = [3, 4, 23, 3]
|
215 |
+
elif layers == 152:
|
216 |
+
depth = [3, 8, 36, 3]
|
217 |
+
elif layers == 200:
|
218 |
+
depth = [3, 12, 48, 3]
|
219 |
+
num_channels = [64, 256, 512, 1024
|
220 |
+
] if layers >= 50 else [64, 64, 128, 256]
|
221 |
+
num_filters = [64, 128, 256, 512]
|
222 |
+
|
223 |
+
# for channels of four returned stages
|
224 |
+
self.feat_channels = [c * 4 for c in num_filters
|
225 |
+
] if layers >= 50 else num_filters
|
226 |
+
self.feat_channels = [64] + self.feat_channels
|
227 |
+
|
228 |
+
dilation_dict = None
|
229 |
+
if output_stride == 8:
|
230 |
+
dilation_dict = {2: 2, 3: 4}
|
231 |
+
elif output_stride == 16:
|
232 |
+
dilation_dict = {3: 2}
|
233 |
+
|
234 |
+
self.conv1_1 = ConvBNLayer(
|
235 |
+
in_channels=input_channels,
|
236 |
+
out_channels=32,
|
237 |
+
kernel_size=3,
|
238 |
+
stride=2,
|
239 |
+
act='relu')
|
240 |
+
self.conv1_2 = ConvBNLayer(
|
241 |
+
in_channels=32,
|
242 |
+
out_channels=32,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
act='relu')
|
246 |
+
self.conv1_3 = ConvBNLayer(
|
247 |
+
in_channels=32,
|
248 |
+
out_channels=64,
|
249 |
+
kernel_size=3,
|
250 |
+
stride=1,
|
251 |
+
act='relu')
|
252 |
+
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
253 |
+
|
254 |
+
# self.block_list = []
|
255 |
+
self.stage_list = []
|
256 |
+
if layers >= 50:
|
257 |
+
for block in range(len(depth)):
|
258 |
+
shortcut = False
|
259 |
+
block_list = []
|
260 |
+
for i in range(depth[block]):
|
261 |
+
if layers in [101, 152] and block == 2:
|
262 |
+
if i == 0:
|
263 |
+
conv_name = "res" + str(block + 2) + "a"
|
264 |
+
else:
|
265 |
+
conv_name = "res" + str(block + 2) + "b" + str(i)
|
266 |
+
else:
|
267 |
+
conv_name = "res" + str(block + 2) + chr(97 + i)
|
268 |
+
|
269 |
+
###############################################################################
|
270 |
+
# Add dilation rate for some segmentation tasks, if dilation_dict is not None.
|
271 |
+
dilation_rate = dilation_dict[
|
272 |
+
block] if dilation_dict and block in dilation_dict else 1
|
273 |
+
|
274 |
+
# Actually block here is 'stage', and i is 'block' in 'stage'
|
275 |
+
# At the stage 4, expand the the dilation_rate if given multi_grid
|
276 |
+
if block == 3:
|
277 |
+
dilation_rate = dilation_rate * multi_grid[i]
|
278 |
+
###############################################################################
|
279 |
+
|
280 |
+
bottleneck_block = self.add_sublayer(
|
281 |
+
'bb_%d_%d' % (block, i),
|
282 |
+
BottleneckBlock(
|
283 |
+
in_channels=num_channels[block]
|
284 |
+
if i == 0 else num_filters[block] * 4,
|
285 |
+
out_channels=num_filters[block],
|
286 |
+
stride=2 if i == 0 and block != 0
|
287 |
+
and dilation_rate == 1 else 1,
|
288 |
+
shortcut=shortcut,
|
289 |
+
if_first=block == i == 0,
|
290 |
+
dilation=dilation_rate))
|
291 |
+
|
292 |
+
block_list.append(bottleneck_block)
|
293 |
+
shortcut = True
|
294 |
+
self.stage_list.append(block_list)
|
295 |
+
else:
|
296 |
+
for block in range(len(depth)):
|
297 |
+
shortcut = False
|
298 |
+
block_list = []
|
299 |
+
for i in range(depth[block]):
|
300 |
+
conv_name = "res" + str(block + 2) + chr(97 + i)
|
301 |
+
basic_block = self.add_sublayer(
|
302 |
+
'bb_%d_%d' % (block, i),
|
303 |
+
BasicBlock(
|
304 |
+
in_channels=num_channels[block]
|
305 |
+
if i == 0 else num_filters[block],
|
306 |
+
out_channels=num_filters[block],
|
307 |
+
stride=2 if i == 0 and block != 0 else 1,
|
308 |
+
shortcut=shortcut,
|
309 |
+
if_first=block == i == 0))
|
310 |
+
block_list.append(basic_block)
|
311 |
+
shortcut = True
|
312 |
+
self.stage_list.append(block_list)
|
313 |
+
|
314 |
+
self.pretrained = pretrained
|
315 |
+
self.init_weight()
|
316 |
+
|
317 |
+
def forward(self, inputs):
|
318 |
+
feat_list = []
|
319 |
+
y = self.conv1_1(inputs)
|
320 |
+
y = self.conv1_2(y)
|
321 |
+
y = self.conv1_3(y)
|
322 |
+
feat_list.append(y)
|
323 |
+
|
324 |
+
y = self.pool2d_max(y)
|
325 |
+
|
326 |
+
# A feature list saves the output feature map of each stage.
|
327 |
+
for stage in self.stage_list:
|
328 |
+
for block in stage:
|
329 |
+
y = block(y)
|
330 |
+
feat_list.append(y)
|
331 |
+
|
332 |
+
return feat_list
|
333 |
+
|
334 |
+
def init_weight(self):
|
335 |
+
utils.load_pretrained_model(self, self.pretrained)
|
336 |
+
|
337 |
+
|
338 |
+
@manager.BACKBONES.add_component
|
339 |
+
def ResNet18_vd(**args):
|
340 |
+
model = ResNet_vd(layers=18, **args)
|
341 |
+
return model
|
342 |
+
|
343 |
+
|
344 |
+
def ResNet34_vd(**args):
|
345 |
+
model = ResNet_vd(layers=34, **args)
|
346 |
+
return model
|
347 |
+
|
348 |
+
|
349 |
+
@manager.BACKBONES.add_component
|
350 |
+
def ResNet50_vd(**args):
|
351 |
+
model = ResNet_vd(layers=50, **args)
|
352 |
+
return model
|
353 |
+
|
354 |
+
|
355 |
+
@manager.BACKBONES.add_component
|
356 |
+
def ResNet101_vd(**args):
|
357 |
+
model = ResNet_vd(layers=101, **args)
|
358 |
+
return model
|
359 |
+
|
360 |
+
|
361 |
+
def ResNet152_vd(**args):
|
362 |
+
model = ResNet_vd(layers=152, **args)
|
363 |
+
return model
|
364 |
+
|
365 |
+
|
366 |
+
def ResNet200_vd(**args):
|
367 |
+
model = ResNet_vd(layers=200, **args)
|
368 |
+
return model
|
matting/model/vgg.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import paddle
|
16 |
+
from paddle import ParamAttr
|
17 |
+
import paddle.nn as nn
|
18 |
+
import paddle.nn.functional as F
|
19 |
+
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
20 |
+
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
21 |
+
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
from paddleseg.utils import utils
|
24 |
+
|
25 |
+
|
26 |
+
class ConvBlock(nn.Layer):
|
27 |
+
def __init__(self, input_channels, output_channels, groups, name=None):
|
28 |
+
super(ConvBlock, self).__init__()
|
29 |
+
|
30 |
+
self.groups = groups
|
31 |
+
self._conv_1 = Conv2D(
|
32 |
+
in_channels=input_channels,
|
33 |
+
out_channels=output_channels,
|
34 |
+
kernel_size=3,
|
35 |
+
stride=1,
|
36 |
+
padding=1,
|
37 |
+
weight_attr=ParamAttr(name=name + "1_weights"),
|
38 |
+
bias_attr=False)
|
39 |
+
if groups == 2 or groups == 3 or groups == 4:
|
40 |
+
self._conv_2 = Conv2D(
|
41 |
+
in_channels=output_channels,
|
42 |
+
out_channels=output_channels,
|
43 |
+
kernel_size=3,
|
44 |
+
stride=1,
|
45 |
+
padding=1,
|
46 |
+
weight_attr=ParamAttr(name=name + "2_weights"),
|
47 |
+
bias_attr=False)
|
48 |
+
if groups == 3 or groups == 4:
|
49 |
+
self._conv_3 = Conv2D(
|
50 |
+
in_channels=output_channels,
|
51 |
+
out_channels=output_channels,
|
52 |
+
kernel_size=3,
|
53 |
+
stride=1,
|
54 |
+
padding=1,
|
55 |
+
weight_attr=ParamAttr(name=name + "3_weights"),
|
56 |
+
bias_attr=False)
|
57 |
+
if groups == 4:
|
58 |
+
self._conv_4 = Conv2D(
|
59 |
+
in_channels=output_channels,
|
60 |
+
out_channels=output_channels,
|
61 |
+
kernel_size=3,
|
62 |
+
stride=1,
|
63 |
+
padding=1,
|
64 |
+
weight_attr=ParamAttr(name=name + "4_weights"),
|
65 |
+
bias_attr=False)
|
66 |
+
|
67 |
+
self._pool = MaxPool2D(
|
68 |
+
kernel_size=2, stride=2, padding=0, return_mask=True)
|
69 |
+
|
70 |
+
def forward(self, inputs):
|
71 |
+
x = self._conv_1(inputs)
|
72 |
+
x = F.relu(x)
|
73 |
+
if self.groups == 2 or self.groups == 3 or self.groups == 4:
|
74 |
+
x = self._conv_2(x)
|
75 |
+
x = F.relu(x)
|
76 |
+
if self.groups == 3 or self.groups == 4:
|
77 |
+
x = self._conv_3(x)
|
78 |
+
x = F.relu(x)
|
79 |
+
if self.groups == 4:
|
80 |
+
x = self._conv_4(x)
|
81 |
+
x = F.relu(x)
|
82 |
+
skip = x
|
83 |
+
x, max_indices = self._pool(x)
|
84 |
+
return x, max_indices, skip
|
85 |
+
|
86 |
+
|
87 |
+
class VGGNet(nn.Layer):
|
88 |
+
def __init__(self, input_channels=3, layers=11, pretrained=None):
|
89 |
+
super(VGGNet, self).__init__()
|
90 |
+
self.pretrained = pretrained
|
91 |
+
|
92 |
+
self.layers = layers
|
93 |
+
self.vgg_configure = {
|
94 |
+
11: [1, 1, 2, 2, 2],
|
95 |
+
13: [2, 2, 2, 2, 2],
|
96 |
+
16: [2, 2, 3, 3, 3],
|
97 |
+
19: [2, 2, 4, 4, 4]
|
98 |
+
}
|
99 |
+
assert self.layers in self.vgg_configure.keys(), \
|
100 |
+
"supported layers are {} but input layer is {}".format(
|
101 |
+
self.vgg_configure.keys(), layers)
|
102 |
+
self.groups = self.vgg_configure[self.layers]
|
103 |
+
|
104 |
+
# matting的第一层卷积输入为4通道,初始化是直接初始化为0
|
105 |
+
self._conv_block_1 = ConvBlock(
|
106 |
+
input_channels, 64, self.groups[0], name="conv1_")
|
107 |
+
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
|
108 |
+
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
|
109 |
+
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
|
110 |
+
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
|
111 |
+
|
112 |
+
# 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化
|
113 |
+
self._conv_6 = Conv2D(
|
114 |
+
512, 512, kernel_size=3, padding=1, bias_attr=False)
|
115 |
+
|
116 |
+
self.init_weight()
|
117 |
+
|
118 |
+
def forward(self, inputs):
|
119 |
+
fea_list = []
|
120 |
+
ids_list = []
|
121 |
+
x, ids, skip = self._conv_block_1(inputs)
|
122 |
+
fea_list.append(skip)
|
123 |
+
ids_list.append(ids)
|
124 |
+
x, ids, skip = self._conv_block_2(x)
|
125 |
+
fea_list.append(skip)
|
126 |
+
ids_list.append(ids)
|
127 |
+
x, ids, skip = self._conv_block_3(x)
|
128 |
+
fea_list.append(skip)
|
129 |
+
ids_list.append(ids)
|
130 |
+
x, ids, skip = self._conv_block_4(x)
|
131 |
+
fea_list.append(skip)
|
132 |
+
ids_list.append(ids)
|
133 |
+
x, ids, skip = self._conv_block_5(x)
|
134 |
+
fea_list.append(skip)
|
135 |
+
ids_list.append(ids)
|
136 |
+
x = F.relu(self._conv_6(x))
|
137 |
+
fea_list.append(x)
|
138 |
+
return fea_list
|
139 |
+
|
140 |
+
def init_weight(self):
|
141 |
+
if self.pretrained is not None:
|
142 |
+
utils.load_pretrained_model(self, self.pretrained)
|
143 |
+
|
144 |
+
|
145 |
+
@manager.BACKBONES.add_component
|
146 |
+
def VGG11(**args):
|
147 |
+
model = VGGNet(layers=11, **args)
|
148 |
+
return model
|
149 |
+
|
150 |
+
|
151 |
+
@manager.BACKBONES.add_component
|
152 |
+
def VGG13(**args):
|
153 |
+
model = VGGNet(layers=13, **args)
|
154 |
+
return model
|
155 |
+
|
156 |
+
|
157 |
+
@manager.BACKBONES.add_component
|
158 |
+
def VGG16(**args):
|
159 |
+
model = VGGNet(layers=16, **args)
|
160 |
+
return model
|
161 |
+
|
162 |
+
|
163 |
+
@manager.BACKBONES.add_component
|
164 |
+
def VGG19(**args):
|
165 |
+
model = VGGNet(layers=19, **args)
|
166 |
+
return model
|
matting/transforms.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import random
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import numpy as np
|
19 |
+
from paddleseg.transforms import functional
|
20 |
+
from paddleseg.cvlibs import manager
|
21 |
+
from PIL import Image
|
22 |
+
|
23 |
+
|
24 |
+
@manager.TRANSFORMS.add_component
|
25 |
+
class Compose:
|
26 |
+
"""
|
27 |
+
Do transformation on input data with corresponding pre-processing and augmentation operations.
|
28 |
+
The shape of input data to all operations is [height, width, channels].
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, transforms, to_rgb=True):
|
32 |
+
if not isinstance(transforms, list):
|
33 |
+
raise TypeError('The transforms must be a list!')
|
34 |
+
self.transforms = transforms
|
35 |
+
self.to_rgb = to_rgb
|
36 |
+
|
37 |
+
def __call__(self, data):
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
data (dict): The data to transform.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
dict: Data after transformation
|
44 |
+
"""
|
45 |
+
if 'trans_info' not in data:
|
46 |
+
data['trans_info'] = []
|
47 |
+
for op in self.transforms:
|
48 |
+
data = op(data)
|
49 |
+
if data is None:
|
50 |
+
return None
|
51 |
+
|
52 |
+
data['img'] = np.transpose(data['img'], (2, 0, 1))
|
53 |
+
for key in data.get('gt_fields', []):
|
54 |
+
if len(data[key].shape) == 2:
|
55 |
+
continue
|
56 |
+
data[key] = np.transpose(data[key], (2, 0, 1))
|
57 |
+
|
58 |
+
return data
|
59 |
+
|
60 |
+
|
61 |
+
@manager.TRANSFORMS.add_component
|
62 |
+
class LoadImages:
|
63 |
+
def __init__(self, to_rgb=True):
|
64 |
+
self.to_rgb = to_rgb
|
65 |
+
|
66 |
+
def __call__(self, data):
|
67 |
+
if isinstance(data['img'], str):
|
68 |
+
data['img'] = cv2.imread(data['img'])
|
69 |
+
for key in data.get('gt_fields', []):
|
70 |
+
if isinstance(data[key], str):
|
71 |
+
data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED)
|
72 |
+
# if alpha and trimap has 3 channels, extract one.
|
73 |
+
if key in ['alpha', 'trimap']:
|
74 |
+
if len(data[key].shape) > 2:
|
75 |
+
data[key] = data[key][:, :, 0]
|
76 |
+
|
77 |
+
if self.to_rgb:
|
78 |
+
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
|
79 |
+
for key in data.get('gt_fields', []):
|
80 |
+
if len(data[key].shape) == 2:
|
81 |
+
continue
|
82 |
+
data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB)
|
83 |
+
|
84 |
+
return data
|
85 |
+
|
86 |
+
|
87 |
+
@manager.TRANSFORMS.add_component
|
88 |
+
class Resize:
|
89 |
+
def __init__(self, target_size=(512, 512)):
|
90 |
+
if isinstance(target_size, list) or isinstance(target_size, tuple):
|
91 |
+
if len(target_size) != 2:
|
92 |
+
raise ValueError(
|
93 |
+
'`target_size` should include 2 elements, but it is {}'.
|
94 |
+
format(target_size))
|
95 |
+
else:
|
96 |
+
raise TypeError(
|
97 |
+
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
|
98 |
+
.format(type(target_size)))
|
99 |
+
|
100 |
+
self.target_size = target_size
|
101 |
+
|
102 |
+
def __call__(self, data):
|
103 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
104 |
+
data['img'] = functional.resize(data['img'], self.target_size)
|
105 |
+
for key in data.get('gt_fields', []):
|
106 |
+
data[key] = functional.resize(data[key], self.target_size)
|
107 |
+
return data
|
108 |
+
|
109 |
+
|
110 |
+
@manager.TRANSFORMS.add_component
|
111 |
+
class ResizeByLong:
|
112 |
+
"""
|
113 |
+
Resize the long side of an image to given size, and then scale the other side proportionally.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
long_size (int): The target size of long side.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, long_size):
|
120 |
+
self.long_size = long_size
|
121 |
+
|
122 |
+
def __call__(self, data):
|
123 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
124 |
+
data['img'] = functional.resize_long(data['img'], self.long_size)
|
125 |
+
for key in data.get('gt_fields', []):
|
126 |
+
data[key] = functional.resize_long(data[key], self.long_size)
|
127 |
+
return data
|
128 |
+
|
129 |
+
|
130 |
+
@manager.TRANSFORMS.add_component
|
131 |
+
class ResizeByShort:
|
132 |
+
"""
|
133 |
+
Resize the short side of an image to given size, and then scale the other side proportionally.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
short_size (int): The target size of short side.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(self, short_size):
|
140 |
+
self.short_size = short_size
|
141 |
+
|
142 |
+
def __call__(self, data):
|
143 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
144 |
+
data['img'] = functional.resize_short(data['img'], self.short_size)
|
145 |
+
for key in data.get('gt_fields', []):
|
146 |
+
data[key] = functional.resize_short(data[key], self.short_size)
|
147 |
+
return data
|
148 |
+
|
149 |
+
|
150 |
+
@manager.TRANSFORMS.add_component
|
151 |
+
class ResizeToIntMult:
|
152 |
+
"""
|
153 |
+
Resize to some int muitple, d.g. 32.
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(self, mult_int=32):
|
157 |
+
self.mult_int = mult_int
|
158 |
+
|
159 |
+
def __call__(self, data):
|
160 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
161 |
+
|
162 |
+
h, w = data['img'].shape[0:2]
|
163 |
+
rw = w - w % 32
|
164 |
+
rh = h - h % 32
|
165 |
+
data['img'] = functional.resize(data['img'], (rw, rh))
|
166 |
+
for key in data.get('gt_fields', []):
|
167 |
+
data[key] = functional.resize(data[key], (rw, rh))
|
168 |
+
|
169 |
+
return data
|
170 |
+
|
171 |
+
|
172 |
+
@manager.TRANSFORMS.add_component
|
173 |
+
class Normalize:
|
174 |
+
"""
|
175 |
+
Normalize an image.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
|
179 |
+
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].
|
180 |
+
|
181 |
+
Raises:
|
182 |
+
ValueError: When mean/std is not list or any value in std is 0.
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
|
186 |
+
self.mean = mean
|
187 |
+
self.std = std
|
188 |
+
if not (isinstance(self.mean, (list, tuple))
|
189 |
+
and isinstance(self.std, (list, tuple))):
|
190 |
+
raise ValueError(
|
191 |
+
"{}: input type is invalid. It should be list or tuple".format(
|
192 |
+
self))
|
193 |
+
from functools import reduce
|
194 |
+
if reduce(lambda x, y: x * y, self.std) == 0:
|
195 |
+
raise ValueError('{}: std is invalid!'.format(self))
|
196 |
+
|
197 |
+
def __call__(self, data):
|
198 |
+
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
|
199 |
+
std = np.array(self.std)[np.newaxis, np.newaxis, :]
|
200 |
+
data['img'] = functional.normalize(data['img'], mean, std)
|
201 |
+
if 'fg' in data.get('gt_fields', []):
|
202 |
+
data['fg'] = functional.normalize(data['fg'], mean, std)
|
203 |
+
if 'bg' in data.get('gt_fields', []):
|
204 |
+
data['bg'] = functional.normalize(data['bg'], mean, std)
|
205 |
+
|
206 |
+
return data
|
207 |
+
|
208 |
+
|
209 |
+
@manager.TRANSFORMS.add_component
|
210 |
+
class RandomCropByAlpha:
|
211 |
+
"""
|
212 |
+
Randomly crop while centered on uncertain area by a certain probability.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
crop_size (tuple|list): The size you want to crop from image.
|
216 |
+
p (float): The probability centered on uncertain area.
|
217 |
+
|
218 |
+
"""
|
219 |
+
|
220 |
+
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)),
|
221 |
+
prob=0.5):
|
222 |
+
self.crop_size = crop_size
|
223 |
+
self.prob = prob
|
224 |
+
|
225 |
+
def __call__(self, data):
|
226 |
+
idex = np.random.randint(low=0, high=len(self.crop_size))
|
227 |
+
crop_w, crop_h = self.crop_size[idex]
|
228 |
+
|
229 |
+
img_h = data['img'].shape[0]
|
230 |
+
img_w = data['img'].shape[1]
|
231 |
+
if np.random.rand() < self.prob:
|
232 |
+
crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255))
|
233 |
+
center_h_array, center_w_array = crop_center
|
234 |
+
if len(center_h_array) == 0:
|
235 |
+
return data
|
236 |
+
rand_ind = np.random.randint(len(center_h_array))
|
237 |
+
center_h = center_h_array[rand_ind]
|
238 |
+
center_w = center_w_array[rand_ind]
|
239 |
+
delta_h = crop_h // 2
|
240 |
+
delta_w = crop_w // 2
|
241 |
+
start_h = max(0, center_h - delta_h)
|
242 |
+
start_w = max(0, center_w - delta_w)
|
243 |
+
else:
|
244 |
+
start_h = 0
|
245 |
+
start_w = 0
|
246 |
+
if img_h > crop_h:
|
247 |
+
start_h = np.random.randint(img_h - crop_h + 1)
|
248 |
+
if img_w > crop_w:
|
249 |
+
start_w = np.random.randint(img_w - crop_w + 1)
|
250 |
+
|
251 |
+
end_h = min(img_h, start_h + crop_h)
|
252 |
+
end_w = min(img_w, start_w + crop_w)
|
253 |
+
|
254 |
+
data['img'] = data['img'][start_h:end_h, start_w:end_w]
|
255 |
+
for key in data.get('gt_fields', []):
|
256 |
+
data[key] = data[key][start_h:end_h, start_w:end_w]
|
257 |
+
|
258 |
+
return data
|
259 |
+
|
260 |
+
|
261 |
+
@manager.TRANSFORMS.add_component
|
262 |
+
class RandomCrop:
|
263 |
+
"""
|
264 |
+
Randomly crop
|
265 |
+
|
266 |
+
Args:
|
267 |
+
crop_size (tuple|list): The size you want to crop from image.
|
268 |
+
"""
|
269 |
+
|
270 |
+
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))):
|
271 |
+
if not isinstance(crop_size[0], (list, tuple)):
|
272 |
+
crop_size = [crop_size]
|
273 |
+
self.crop_size = crop_size
|
274 |
+
|
275 |
+
def __call__(self, data):
|
276 |
+
idex = np.random.randint(low=0, high=len(self.crop_size))
|
277 |
+
crop_w, crop_h = self.crop_size[idex]
|
278 |
+
img_h, img_w = data['img'].shape[0:2]
|
279 |
+
|
280 |
+
start_h = 0
|
281 |
+
start_w = 0
|
282 |
+
if img_h > crop_h:
|
283 |
+
start_h = np.random.randint(img_h - crop_h + 1)
|
284 |
+
if img_w > crop_w:
|
285 |
+
start_w = np.random.randint(img_w - crop_w + 1)
|
286 |
+
|
287 |
+
end_h = min(img_h, start_h + crop_h)
|
288 |
+
end_w = min(img_w, start_w + crop_w)
|
289 |
+
|
290 |
+
data['img'] = data['img'][start_h:end_h, start_w:end_w]
|
291 |
+
for key in data.get('gt_fields', []):
|
292 |
+
data[key] = data[key][start_h:end_h, start_w:end_w]
|
293 |
+
|
294 |
+
return data
|
295 |
+
|
296 |
+
|
297 |
+
@manager.TRANSFORMS.add_component
|
298 |
+
class LimitLong:
|
299 |
+
"""
|
300 |
+
Limit the long edge of image.
|
301 |
+
|
302 |
+
If the long edge is larger than max_long, resize the long edge
|
303 |
+
to max_long, while scale the short edge proportionally.
|
304 |
+
|
305 |
+
If the long edge is smaller than min_long, resize the long edge
|
306 |
+
to min_long, while scale the short edge proportionally.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
max_long (int, optional): If the long edge of image is larger than max_long,
|
310 |
+
it will be resize to max_long. Default: None.
|
311 |
+
min_long (int, optional): If the long edge of image is smaller than min_long,
|
312 |
+
it will be resize to min_long. Default: None.
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(self, max_long=None, min_long=None):
|
316 |
+
if max_long is not None:
|
317 |
+
if not isinstance(max_long, int):
|
318 |
+
raise TypeError(
|
319 |
+
"Type of `max_long` is invalid. It should be int, but it is {}"
|
320 |
+
.format(type(max_long)))
|
321 |
+
if min_long is not None:
|
322 |
+
if not isinstance(min_long, int):
|
323 |
+
raise TypeError(
|
324 |
+
"Type of `min_long` is invalid. It should be int, but it is {}"
|
325 |
+
.format(type(min_long)))
|
326 |
+
if (max_long is not None) and (min_long is not None):
|
327 |
+
if min_long > max_long:
|
328 |
+
raise ValueError(
|
329 |
+
'`max_long should not smaller than min_long, but they are {} and {}'
|
330 |
+
.format(max_long, min_long))
|
331 |
+
self.max_long = max_long
|
332 |
+
self.min_long = min_long
|
333 |
+
|
334 |
+
def __call__(self, data):
|
335 |
+
h, w = data['img'].shape[:2]
|
336 |
+
long_edge = max(h, w)
|
337 |
+
target = long_edge
|
338 |
+
if (self.max_long is not None) and (long_edge > self.max_long):
|
339 |
+
target = self.max_long
|
340 |
+
elif (self.min_long is not None) and (long_edge < self.min_long):
|
341 |
+
target = self.min_long
|
342 |
+
|
343 |
+
if target != long_edge:
|
344 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
345 |
+
data['img'] = functional.resize_long(data['img'], target)
|
346 |
+
for key in data.get('gt_fields', []):
|
347 |
+
data[key] = functional.resize_long(data[key], target)
|
348 |
+
|
349 |
+
return data
|
350 |
+
|
351 |
+
|
352 |
+
@manager.TRANSFORMS.add_component
|
353 |
+
class RandomHorizontalFlip:
|
354 |
+
"""
|
355 |
+
Flip an image horizontally with a certain probability.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
prob (float, optional): A probability of horizontally flipping. Default: 0.5.
|
359 |
+
"""
|
360 |
+
|
361 |
+
def __init__(self, prob=0.5):
|
362 |
+
self.prob = prob
|
363 |
+
|
364 |
+
def __call__(self, data):
|
365 |
+
if random.random() < self.prob:
|
366 |
+
data['img'] = functional.horizontal_flip(data['img'])
|
367 |
+
for key in data.get('gt_fields', []):
|
368 |
+
data[key] = functional.horizontal_flip(data[key])
|
369 |
+
|
370 |
+
return data
|
371 |
+
|
372 |
+
|
373 |
+
@manager.TRANSFORMS.add_component
|
374 |
+
class RandomBlur:
|
375 |
+
"""
|
376 |
+
Blurring an image by a Gaussian function with a certain probability.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
prob (float, optional): A probability of blurring an image. Default: 0.1.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, prob=0.1):
|
383 |
+
self.prob = prob
|
384 |
+
|
385 |
+
def __call__(self, data):
|
386 |
+
if self.prob <= 0:
|
387 |
+
n = 0
|
388 |
+
elif self.prob >= 1:
|
389 |
+
n = 1
|
390 |
+
else:
|
391 |
+
n = int(1.0 / self.prob)
|
392 |
+
if n > 0:
|
393 |
+
if np.random.randint(0, n) == 0:
|
394 |
+
radius = np.random.randint(3, 10)
|
395 |
+
if radius % 2 != 1:
|
396 |
+
radius = radius + 1
|
397 |
+
if radius > 9:
|
398 |
+
radius = 9
|
399 |
+
data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0,
|
400 |
+
0)
|
401 |
+
for key in data.get('gt_fields', []):
|
402 |
+
data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0,
|
403 |
+
0)
|
404 |
+
return data
|
405 |
+
|
406 |
+
|
407 |
+
@manager.TRANSFORMS.add_component
|
408 |
+
class RandomDistort:
|
409 |
+
"""
|
410 |
+
Distort an image with random configurations.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
brightness_range (float, optional): A range of brightness. Default: 0.5.
|
414 |
+
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5.
|
415 |
+
contrast_range (float, optional): A range of contrast. Default: 0.5.
|
416 |
+
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5.
|
417 |
+
saturation_range (float, optional): A range of saturation. Default: 0.5.
|
418 |
+
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5.
|
419 |
+
hue_range (int, optional): A range of hue. Default: 18.
|
420 |
+
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5.
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(self,
|
424 |
+
brightness_range=0.5,
|
425 |
+
brightness_prob=0.5,
|
426 |
+
contrast_range=0.5,
|
427 |
+
contrast_prob=0.5,
|
428 |
+
saturation_range=0.5,
|
429 |
+
saturation_prob=0.5,
|
430 |
+
hue_range=18,
|
431 |
+
hue_prob=0.5):
|
432 |
+
self.brightness_range = brightness_range
|
433 |
+
self.brightness_prob = brightness_prob
|
434 |
+
self.contrast_range = contrast_range
|
435 |
+
self.contrast_prob = contrast_prob
|
436 |
+
self.saturation_range = saturation_range
|
437 |
+
self.saturation_prob = saturation_prob
|
438 |
+
self.hue_range = hue_range
|
439 |
+
self.hue_prob = hue_prob
|
440 |
+
|
441 |
+
def __call__(self, data):
|
442 |
+
brightness_lower = 1 - self.brightness_range
|
443 |
+
brightness_upper = 1 + self.brightness_range
|
444 |
+
contrast_lower = 1 - self.contrast_range
|
445 |
+
contrast_upper = 1 + self.contrast_range
|
446 |
+
saturation_lower = 1 - self.saturation_range
|
447 |
+
saturation_upper = 1 + self.saturation_range
|
448 |
+
hue_lower = -self.hue_range
|
449 |
+
hue_upper = self.hue_range
|
450 |
+
ops = [
|
451 |
+
functional.brightness, functional.contrast, functional.saturation,
|
452 |
+
functional.hue
|
453 |
+
]
|
454 |
+
random.shuffle(ops)
|
455 |
+
params_dict = {
|
456 |
+
'brightness': {
|
457 |
+
'brightness_lower': brightness_lower,
|
458 |
+
'brightness_upper': brightness_upper
|
459 |
+
},
|
460 |
+
'contrast': {
|
461 |
+
'contrast_lower': contrast_lower,
|
462 |
+
'contrast_upper': contrast_upper
|
463 |
+
},
|
464 |
+
'saturation': {
|
465 |
+
'saturation_lower': saturation_lower,
|
466 |
+
'saturation_upper': saturation_upper
|
467 |
+
},
|
468 |
+
'hue': {
|
469 |
+
'hue_lower': hue_lower,
|
470 |
+
'hue_upper': hue_upper
|
471 |
+
}
|
472 |
+
}
|
473 |
+
prob_dict = {
|
474 |
+
'brightness': self.brightness_prob,
|
475 |
+
'contrast': self.contrast_prob,
|
476 |
+
'saturation': self.saturation_prob,
|
477 |
+
'hue': self.hue_prob
|
478 |
+
}
|
479 |
+
|
480 |
+
im = data['img'].astype('uint8')
|
481 |
+
im = Image.fromarray(im)
|
482 |
+
for id in range(len(ops)):
|
483 |
+
params = params_dict[ops[id].__name__]
|
484 |
+
params['im'] = im
|
485 |
+
prob = prob_dict[ops[id].__name__]
|
486 |
+
if np.random.uniform(0, 1) < prob:
|
487 |
+
im = ops[id](**params)
|
488 |
+
data['img'] = np.asarray(im)
|
489 |
+
|
490 |
+
for key in data.get('gt_fields', []):
|
491 |
+
if key in ['alpha', 'trimap']:
|
492 |
+
continue
|
493 |
+
else:
|
494 |
+
im = data[key].astype('uint8')
|
495 |
+
im = Image.fromarray(im)
|
496 |
+
for id in range(len(ops)):
|
497 |
+
params = params_dict[ops[id].__name__]
|
498 |
+
params['im'] = im
|
499 |
+
prob = prob_dict[ops[id].__name__]
|
500 |
+
if np.random.uniform(0, 1) < prob:
|
501 |
+
im = ops[id](**params)
|
502 |
+
data[key] = np.asarray(im)
|
503 |
+
return data
|
504 |
+
|
505 |
+
|
506 |
+
if __name__ == "__main__":
|
507 |
+
transforms = [RandomDistort()]
|
508 |
+
transforms = Compose(transforms)
|
509 |
+
fg_path = '/ssd1/home/chenguowei01/github/PaddleSeg/contrib/matting/data/matting/human_matting/Distinctions-646/train/fg/13(2).png'
|
510 |
+
alpha_path = fg_path.replace('fg', 'alpha')
|
511 |
+
bg_path = '/ssd1/home/chenguowei01/github/PaddleSeg/contrib/matting/data/matting/human_matting/bg/unsplash_bg/attic/photo-1443884590026-2e4d21aee71c?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwxMjA3fDB8MXxzZWFyY2h8Nzh8fGF0dGljfGVufDB8fHx8MTYyOTY4MDcxNQ&ixlib=rb-1.2.1&q=80&w=400.jpg'
|
512 |
+
data = {}
|
513 |
+
data['fg'] = cv2.imread(fg_path)
|
514 |
+
data['bg'] = cv2.imread(bg_path)
|
515 |
+
h, w, c = data['fg'].shape
|
516 |
+
data['bg'] = cv2.resize(data['bg'], (w, h))
|
517 |
+
alpha = cv2.imread(alpha_path)
|
518 |
+
data['alpha'] = alpha[:, :, 0]
|
519 |
+
alpha = alpha / 255.
|
520 |
+
data['img'] = alpha * data['fg'] + (1 - alpha) * data['bg']
|
521 |
+
|
522 |
+
data['gt_fields'] = ['fg', 'bg']
|
523 |
+
print(data['img'].shape)
|
524 |
+
for key in data['gt_fields']:
|
525 |
+
print(data[key].shape)
|
526 |
+
# import pdb
|
527 |
+
# pdb.set_trace()
|
528 |
+
data = transforms(data)
|
529 |
+
print(data['img'].dtype, data['img'].shape)
|
530 |
+
cv2.imwrite('distort_img.jpg', data['img'].transpose([1, 2, 0]))
|
matting/utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
|
18 |
+
def get_files(root_path):
|
19 |
+
res = []
|
20 |
+
for root, dirs, files in os.walk(root_path, followlinks=True):
|
21 |
+
for f in files:
|
22 |
+
if f.endswith(('.jpg', '.png', '.jpeg', 'JPG')):
|
23 |
+
res.append(os.path.join(root, f))
|
24 |
+
return res
|
25 |
+
|
26 |
+
|
27 |
+
def get_image_list(image_path):
|
28 |
+
"""Get image list"""
|
29 |
+
valid_suffix = [
|
30 |
+
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
|
31 |
+
]
|
32 |
+
image_list = []
|
33 |
+
image_dir = None
|
34 |
+
if os.path.isfile(image_path):
|
35 |
+
if os.path.splitext(image_path)[-1] in valid_suffix:
|
36 |
+
image_list.append(image_path)
|
37 |
+
else:
|
38 |
+
image_dir = os.path.dirname(image_path)
|
39 |
+
with open(image_path, 'r') as f:
|
40 |
+
for line in f:
|
41 |
+
line = line.strip()
|
42 |
+
if len(line.split()) > 1:
|
43 |
+
raise RuntimeError(
|
44 |
+
'There should be only one image path per line in `image_path` file. Wrong line: {}'
|
45 |
+
.format(line))
|
46 |
+
image_list.append(os.path.join(image_dir, line))
|
47 |
+
elif os.path.isdir(image_path):
|
48 |
+
image_dir = image_path
|
49 |
+
for root, dirs, files in os.walk(image_path):
|
50 |
+
for f in files:
|
51 |
+
if '.ipynb_checkpoints' in root:
|
52 |
+
continue
|
53 |
+
if os.path.splitext(f)[-1] in valid_suffix:
|
54 |
+
image_list.append(os.path.join(root, f))
|
55 |
+
image_list.sort()
|
56 |
+
else:
|
57 |
+
raise FileNotFoundError(
|
58 |
+
'`image_path` is not found. it should be an image file or a directory including images'
|
59 |
+
)
|
60 |
+
|
61 |
+
if len(image_list) == 0:
|
62 |
+
raise RuntimeError('There are not image file in `image_path`')
|
63 |
+
|
64 |
+
return image_list, image_dir
|
65 |
+
|
66 |
+
|
67 |
+
def mkdir(path):
|
68 |
+
sub_dir = os.path.dirname(path)
|
69 |
+
if not os.path.exists(sub_dir):
|
70 |
+
os.makedirs(sub_dir)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
paddlepaddle
|
2 |
+
paddleseg
|
train.txt
ADDED
File without changes
|
val.txt
ADDED
File without changes
|