DeepDiveDev's picture
Update app.py
d1bb7e2 verified
raw
history blame
2.03 kB
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import numpy as np
import torch
# Load the primary model (DeepDiveDev/transformodocs-ocr)
processor1 = TrOCRProcessor.from_pretrained("DeepDiveDev/transformodocs-ocr")
model1 = VisionEncoderDecoderModel.from_pretrained("DeepDiveDev/transformodocs-ocr")
# Load the fallback model (microsoft/trocr-base-handwritten)
processor2 = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model2 = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
# Function to extract text using both models
def extract_text(image):
try:
# Ensure the input is a PIL image
if isinstance(image, np.ndarray):
if len(image.shape) == 2: # Grayscale (H, W), convert to RGB
image = np.stack([image] * 3, axis=-1)
image = Image.fromarray(image)
else:
image = Image.open(image).convert("RGB") # Ensure RGB mode
# Resize for better accuracy
image = image.resize((640, 640))
# Process with the primary model
pixel_values = processor1(images=image, return_tensors="pt").pixel_values
generated_ids = model1.generate(pixel_values)
extracted_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
# If output seems incorrect, use the fallback model
if len(extracted_text.strip()) < 2:
inputs = processor2(images=image, return_tensors="pt").pixel_values
generated_ids = model2.generate(inputs)
extracted_text = processor2.batch_decode(generated_ids, skip_special_tokens=True)[0]
return extracted_text
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
iface = gr.Interface(
fn=extract_text,
inputs="image",
outputs="text",
title="TransformoDocs - AI OCR",
description="Upload a handwritten document and get the extracted text.",
)
iface.launch()