Spaces:
Runtime error
Runtime error
import streamlit as st | |
import transformers | |
import torch | |
# Load the model and tokenizer | |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
# Define the function for sentiment analysis | |
def predict_sentiment(text): | |
# Load the pipeline. | |
pipeline = transformers.pipeline("sentiment-analysis") | |
# Predict the sentiment. | |
prediction = pipeline(text) | |
sentiment = prediction[0]["label"] | |
score = prediction[0]["score"] | |
return sentiment, score | |
# Setting the page configurations | |
st.set_page_config( | |
page_title="Sentiment Analysis App", | |
page_icon=":smile:", | |
layout="wide", | |
initial_sidebar_state="auto", | |
) | |
# Add description and title | |
st.write(""" | |
# Predict if your text is Positive, Negative or Nuetral ... | |
Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment! | |
""") | |
# Add image | |
image = st.image("https://medium.com/scrapehero/sentiment-analysis-using-svm-338d418e3ff1", width=400) | |
# Get user input | |
text = st.text_input("Type here:") | |
# Define the CSS style for the app | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-color: #f5f5f5; | |
} | |
h1 { | |
color: #4e79a7; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Show sentiment output | |
if text: | |
sentiment, score = predict_sentiment(text) | |
if sentiment == "Positive": | |
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
elif sentiment == "Negative": | |
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
else: | |
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") |