Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,88 +4,185 @@ import numpy as np
|
|
4 |
import random
|
5 |
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
7 |
-
import requests
|
8 |
-
import re
|
9 |
-
import asyncio
|
10 |
-
from PIL import Image
|
11 |
from gradio_client import Client, handle_file
|
|
|
12 |
from huggingface_hub import login
|
13 |
-
from
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
-
HF_TOKEN =
|
17 |
-
HF_TOKEN_UPSCALER =
|
18 |
|
|
|
19 |
def enable_lora(lora_add, basemodel):
|
|
|
20 |
return basemodel if not lora_add else lora_add
|
21 |
|
|
|
22 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
23 |
try:
|
24 |
if seed == -1:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
seed = int(seed)
|
|
|
|
|
27 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
|
|
|
|
28 |
client = AsyncInferenceClient()
|
29 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
30 |
return image, seed
|
31 |
except Exception as e:
|
32 |
-
print(f"Error
|
33 |
return None, None
|
34 |
|
|
|
35 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
36 |
try:
|
|
|
37 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
38 |
-
result = client.predict(
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
except Exception as e:
|
41 |
-
print(f"Error
|
42 |
return None
|
43 |
-
|
|
|
44 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
|
|
|
|
45 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
|
|
|
|
46 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
47 |
-
if image is None:
|
48 |
-
return [None, None]
|
49 |
|
|
|
|
|
|
|
|
|
50 |
image_path = "temp_image.jpg"
|
|
|
51 |
image.save(image_path, format="JPEG")
|
52 |
-
|
|
|
53 |
if process_upscale:
|
|
|
54 |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
55 |
-
if upscale_image_path is not None:
|
56 |
-
|
57 |
-
|
58 |
-
return [image_path, "upscale_image.jpg"]
|
59 |
else:
|
60 |
-
print("
|
61 |
-
|
62 |
-
|
63 |
-
return [image_path, image_path]
|
64 |
|
|
|
65 |
css = """
|
66 |
-
#col-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"""
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
with gr.Column(elem_id="col-container"):
|
|
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import random
|
5 |
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
|
|
|
|
|
|
|
|
7 |
from gradio_client import Client, handle_file
|
8 |
+
from PIL import Image
|
9 |
from huggingface_hub import login
|
10 |
+
from themes import IndonesiaTheme # Import custom IndonesiaTheme
|
11 |
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
13 |
+
HF_TOKEN = "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"
|
14 |
+
HF_TOKEN_UPSCALER = "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"
|
15 |
|
16 |
+
# Function to enable LoRA if selected
|
17 |
def enable_lora(lora_add, basemodel):
|
18 |
+
print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}")
|
19 |
return basemodel if not lora_add else lora_add
|
20 |
|
21 |
+
# Function to generate image
|
22 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
23 |
try:
|
24 |
if seed == -1:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
seed = int(seed)
|
27 |
+
|
28 |
+
print(f"[-] Menerjemahkan prompt: {prompt}")
|
29 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
30 |
+
|
31 |
+
print(f"[-] Generating image with prompt: {text}, model: {model}")
|
32 |
client = AsyncInferenceClient()
|
33 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
34 |
return image, seed
|
35 |
except Exception as e:
|
36 |
+
print(f"[-] Error generating image: {e}")
|
37 |
return None, None
|
38 |
|
39 |
+
# Function to upscale image
|
40 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
41 |
try:
|
42 |
+
print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
|
43 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
44 |
+
result = client.predict(
|
45 |
+
input_image=handle_file(img_path),
|
46 |
+
prompt=prompt,
|
47 |
+
negative_prompt="worst quality, low quality, normal quality",
|
48 |
+
upscale_factor=upscale_factor,
|
49 |
+
controlnet_scale=0.6,
|
50 |
+
controlnet_decay=1,
|
51 |
+
condition_scale=6,
|
52 |
+
denoise_strength=0.35,
|
53 |
+
num_inference_steps=18,
|
54 |
+
solver="DDIM",
|
55 |
+
api_name="/process"
|
56 |
+
)
|
57 |
+
print(f"[-] Proses upscaling berhasil.")
|
58 |
+
return result[1] # Return upscale image path
|
59 |
except Exception as e:
|
60 |
+
print(f"[-] Error scaling image: {e}")
|
61 |
return None
|
62 |
+
|
63 |
+
# Main function to generate images and optionally upscale
|
64 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
65 |
+
print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
|
66 |
+
|
67 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
68 |
+
print(f"[-] Menggunakan model: {model}")
|
69 |
+
|
70 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
|
|
|
|
71 |
|
72 |
+
if image is None:
|
73 |
+
print("[-] Image generation failed.")
|
74 |
+
return []
|
75 |
+
|
76 |
image_path = "temp_image.jpg"
|
77 |
+
print(f"[-] Menyimpan gambar sementara di: {image_path}")
|
78 |
image.save(image_path, format="JPEG")
|
79 |
+
|
80 |
+
upscale_image_path = None
|
81 |
if process_upscale:
|
82 |
+
print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
|
83 |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
84 |
+
if upscale_image_path is not None and os.path.exists(upscale_image_path):
|
85 |
+
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
|
86 |
+
return [image_path, upscale_image_path] # Return both images
|
|
|
87 |
else:
|
88 |
+
print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.")
|
89 |
+
|
90 |
+
return [image_path]
|
|
|
91 |
|
92 |
+
# CSS for styling the interface
|
93 |
css = """
|
94 |
+
#col-left, #col-mid, #col-right {
|
95 |
+
margin: 0 auto;
|
96 |
+
max-width: 400px;
|
97 |
+
padding: 10px;
|
98 |
+
border-radius: 15px;
|
99 |
+
background-color: #f9f9f9;
|
100 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
101 |
+
}
|
102 |
+
#banner {
|
103 |
+
width: 100%;
|
104 |
+
text-align: center;
|
105 |
+
margin-bottom: 20px;
|
106 |
+
}
|
107 |
+
#run-button {
|
108 |
+
background-color: #ff4b5c;
|
109 |
+
color: white;
|
110 |
+
font-weight: bold;
|
111 |
+
padding: 10px;
|
112 |
+
border-radius: 10px;
|
113 |
+
cursor: pointer;
|
114 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
115 |
+
}
|
116 |
+
#footer {
|
117 |
+
text-align: center;
|
118 |
+
margin-top: 20px;
|
119 |
+
color: silver;
|
120 |
+
}
|
121 |
"""
|
122 |
|
123 |
+
# Creating Gradio interface
|
124 |
+
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
|
125 |
+
# Displaying the application title
|
126 |
+
gr.HTML('<div id="banner">β¨ Flux MultiMode Generator + Upscaler β¨</div>')
|
127 |
+
|
128 |
with gr.Column(elem_id="col-container"):
|
129 |
+
# Output section (replacing ImageSlider with gr.Gallery)
|
130 |
with gr.Row():
|
131 |
+
output_res = gr.Gallery(label="β‘ Flux / Upscaled Image β‘", elem_id="output-res", columns=2, height="auto")
|
132 |
+
|
133 |
+
# User input section split into two columns
|
134 |
+
with gr.Row():
|
135 |
+
# Column 1: Input prompt, LoRA, and base model
|
136 |
+
with gr.Column(scale=1, elem_id="col-left"):
|
137 |
+
prompt = gr.Textbox(
|
138 |
+
label="π Deskripsi Gambar",
|
139 |
+
placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.",
|
140 |
+
elem_id="textbox-prompt"
|
141 |
+
)
|
142 |
+
|
143 |
+
basemodel_choice = gr.Dropdown(
|
144 |
+
label="πΌοΈ Pilih Model",
|
145 |
+
choices=[
|
146 |
+
"black-forest-labs/FLUX.1-schnell",
|
147 |
+
"black-forest-labs/FLUX.1-DEV",
|
148 |
+
"enhanceaiteam/Flux-uncensored",
|
149 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
150 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
151 |
+
"city96/FLUX.1-dev-gguf"
|
152 |
+
],
|
153 |
+
value="black-forest-labs/FLUX.1-schnell"
|
154 |
+
)
|
155 |
+
|
156 |
+
lora_model_choice = gr.Dropdown(
|
157 |
+
label="π¨ Pilih LoRA",
|
158 |
+
choices=[
|
159 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
160 |
+
"XLabs-AI/flux-RealismLora",
|
161 |
+
"enhanceaiteam/Flux-uncensored"
|
162 |
+
],
|
163 |
+
value="XLabs-AI/flux-RealismLora"
|
164 |
+
)
|
165 |
+
|
166 |
+
process_lora = gr.Checkbox(label="π¨ Aktifkan LoRA")
|
167 |
+
process_upscale = gr.Checkbox(label="π Aktifkan Peningkatan Resolusi")
|
168 |
+
upscale_factor = gr.Radio(label="π Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2)
|
169 |
+
|
170 |
+
# Column 2: Advanced options (always open)
|
171 |
+
with gr.Column(scale=1, elem_id="col-right"):
|
172 |
+
with gr.Accordion(label="βοΈ Opsi Lanjutan", open=True):
|
173 |
+
width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280)
|
174 |
+
height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768)
|
175 |
+
scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8)
|
176 |
+
steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8)
|
177 |
+
seed = gr.Number(label="Seed", value=-1)
|
178 |
+
|
179 |
+
# Button to generate image
|
180 |
+
btn = gr.Button("π Buat Gambar", elem_id="generate-btn")
|
181 |
+
|
182 |
+
# Running the `gen` function when "Generate" button is pressed
|
183 |
+
btn.click(fn=gen, inputs=[
|
184 |
+
prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
|
185 |
+
], outputs=output_res)
|
186 |
+
|
187 |
+
# Launching the Gradio app
|
188 |
+
WallpaperFluxMaker.queue(api_open=False).launch(show_api=False)
|