Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from langchain import HuggingFacePipeline, PromptTemplate
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
import pickle
|
12 |
+
import fitz # PyMuPDF
|
13 |
+
from langchain.schema import Document
|
14 |
+
import langdetect
|
15 |
+
|
16 |
+
def clean_output(output: str) -> str:
|
17 |
+
print("Raw output:", output) # Debugging line
|
18 |
+
start_index = output.find('[/INST]') + len('[/INST]')
|
19 |
+
cleaned_output = output[start_index:].strip()
|
20 |
+
print("Cleaned output:", cleaned_output) # Debugging line
|
21 |
+
return cleaned_output
|
22 |
+
|
23 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
def split_text_into_paragraphs(text_content):
|
26 |
+
paragraphs = text_content.split('#')
|
27 |
+
return [paragraph.strip() for paragraph in paragraphs if paragraph.strip()]
|
28 |
+
|
29 |
+
def sanitize_filename(filename):
|
30 |
+
sanitized_name = re.sub(r'[^a-zA-Z0-9_-]', '_', filename)
|
31 |
+
return sanitized_name[:63]
|
32 |
+
|
33 |
+
def extract_text_from_pdf(pdf_path):
|
34 |
+
text_content = ''
|
35 |
+
with fitz.open(pdf_path) as pdf_document:
|
36 |
+
for page_num in range(len(pdf_document)):
|
37 |
+
page = pdf_document[page_num]
|
38 |
+
text_content += page.get_text()
|
39 |
+
return text_content
|
40 |
+
|
41 |
+
def detect_language(text):
|
42 |
+
try:
|
43 |
+
return langdetect.detect(text)
|
44 |
+
except:
|
45 |
+
return "en" # Default to English if detection fails
|
46 |
+
|
47 |
+
def process_pdf_file(filename, pdf_path, embeddings, llm, prompt):
|
48 |
+
print(f'\nProcessing: {pdf_path}')
|
49 |
+
text_content = extract_text_from_pdf(pdf_path)
|
50 |
+
|
51 |
+
language = detect_language(text_content)
|
52 |
+
print(f"Detected language: {language}")
|
53 |
+
|
54 |
+
paragraphs = split_text_into_paragraphs(text_content)
|
55 |
+
documents = [Document(page_content=paragraph, metadata={"language": language, "source": filename}) for paragraph in paragraphs]
|
56 |
+
|
57 |
+
print(f"Number of documents created: {len(documents)}")
|
58 |
+
|
59 |
+
collection_name = sanitize_filename(os.path.basename(filename))
|
60 |
+
db = Chroma.from_documents(documents, embeddings, collection_name=collection_name)
|
61 |
+
retriever = db.as_retriever(search_kwargs={"k": 2})
|
62 |
+
qa_chain = RetrievalQA.from_chain_type(
|
63 |
+
llm=llm,
|
64 |
+
chain_type="stuff",
|
65 |
+
retriever=retriever,
|
66 |
+
return_source_documents=True,
|
67 |
+
chain_type_kwargs={"prompt": prompt},
|
68 |
+
)
|
69 |
+
|
70 |
+
print(f"QA chain created for {filename}")
|
71 |
+
return qa_chain, language
|
72 |
+
|
73 |
+
SYSTEM_PROMPT = """
|
74 |
+
Use the provided context to answer the question clearly and concisely. Do not repeat the context in your answer.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def generate_prompt(prompt: str, system_prompt: str = SYSTEM_PROMPT) -> str:
|
78 |
+
return f"""
|
79 |
+
[INST] <>
|
80 |
+
{system_prompt}
|
81 |
+
<>
|
82 |
+
|
83 |
+
{prompt} [/INST]
|
84 |
+
""".strip()
|
85 |
+
|
86 |
+
def main():
|
87 |
+
# Streamlit UI
|
88 |
+
st.title("PDF-Powered Chatbot")
|
89 |
+
|
90 |
+
# File Uploader
|
91 |
+
uploaded_files = st.file_uploader("Upload PDF files", type="pdf", accept_multiple_files=True)
|
92 |
+
|
93 |
+
# Model Loading
|
94 |
+
model_pickle_path = '/kaggle/working/model.pkl'
|
95 |
+
|
96 |
+
if os.path.exists(model_pickle_path):
|
97 |
+
with open(model_pickle_path, 'rb') as f:
|
98 |
+
model, tokenizer = pickle.load(f)
|
99 |
+
else:
|
100 |
+
MODEL_NAME = "sarvamai/sarvam-2b-v0.5"
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
102 |
+
tokenizer.pad_token = tokenizer.eos_token
|
103 |
+
|
104 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(DEVICE)
|
105 |
+
with open(model_pickle_path, 'wb') as f:
|
106 |
+
pickle.dump((model, tokenizer), f)
|
107 |
+
|
108 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
109 |
+
|
110 |
+
text_pipeline = pipeline(
|
111 |
+
"text-generation",
|
112 |
+
model=model,
|
113 |
+
tokenizer=tokenizer,
|
114 |
+
max_new_tokens=1024,
|
115 |
+
temperature=0.1,
|
116 |
+
top_p=0.95,
|
117 |
+
repetition_penalty=1.15,
|
118 |
+
device=DEVICE
|
119 |
+
)
|
120 |
+
|
121 |
+
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0})
|
122 |
+
|
123 |
+
template = generate_prompt(
|
124 |
+
"""
|
125 |
+
{context}
|
126 |
+
|
127 |
+
Question: {question}
|
128 |
+
""",
|
129 |
+
system_prompt=SYSTEM_PROMPT,
|
130 |
+
)
|
131 |
+
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
132 |
+
|
133 |
+
# Initialize QA chains dictionary
|
134 |
+
qa_chains = {}
|
135 |
+
|
136 |
+
# Process uploaded files
|
137 |
+
if uploaded_files:
|
138 |
+
with st.spinner("Processing PDFs..."):
|
139 |
+
for uploaded_file in uploaded_files:
|
140 |
+
file_path = uploaded_file.name # Use the filename directly
|
141 |
+
qa_chain, doc_language = process_pdf_file(uploaded_file.name, file_path, embeddings, llm, prompt)
|
142 |
+
qa_chains[doc_language] = (qa_chain, uploaded_file.name)
|
143 |
+
|
144 |
+
st.success("PDFs processed! You can now ask questions.")
|
145 |
+
|
146 |
+
# Chat interface
|
147 |
+
if st.button("Clear Chat History"):
|
148 |
+
st.session_state.chat_history = []
|
149 |
+
|
150 |
+
if "chat_history" not in st.session_state:
|
151 |
+
st.session_state.chat_history = []
|
152 |
+
|
153 |
+
for message in st.session_state.chat_history:
|
154 |
+
with st.chat_message(message["role"]):
|
155 |
+
st.markdown(message["content"])
|
156 |
+
|
157 |
+
if prompt := st.chat_input("Ask your question here"):
|
158 |
+
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
159 |
+
with st.chat_message("user"):
|
160 |
+
st.markdown(prompt)
|
161 |
+
|
162 |
+
with st.spinner("Generating response..."):
|
163 |
+
query_language = detect_language(prompt)
|
164 |
+
|
165 |
+
if query_language in qa_chains:
|
166 |
+
qa_chain, _ = qa_chains[query_language]
|
167 |
+
result = qa_chain({"query": prompt})
|
168 |
+
cleaned_answer = clean_output(result['result'])
|
169 |
+
|
170 |
+
with st.chat_message("assistant"):
|
171 |
+
st.markdown(cleaned_answer)
|
172 |
+
st.session_state.chat_history.append({"role": "assistant", "content": cleaned_answer})
|
173 |
+
else:
|
174 |
+
with st.chat_message("assistant"):
|
175 |
+
st.markdown(f"No document available for the detected language: {query_language}")
|
176 |
+
st.session_state.chat_history.append({"role": "assistant", "content": f"No document available for the detected language: {query_language}"})
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
main()
|