DebasishDhal99
commited on
Commit
·
f115572
1
Parent(s):
f7450ea
Create multi_agent_2D.py
Browse files- multi_agent_2D.py +136 -0
multi_agent_2D.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from matplotlib.lines import Line2D
|
6 |
+
|
7 |
+
def single_random_walk(iters, agent_number, ax, step_size = 1, random_seed = None):
|
8 |
+
# random.seed(random_seed)
|
9 |
+
if random_seed:
|
10 |
+
random.seed(random_seed)
|
11 |
+
|
12 |
+
iters = int(iters)
|
13 |
+
directions = ['east', 'north', 'west', 'south']
|
14 |
+
start_point = [0, 0]
|
15 |
+
|
16 |
+
def distance_from_start(final_coord, start_coord, round_to=2):
|
17 |
+
return round(np.sqrt((final_coord[0] - start_coord[0])**2 + (final_coord[1] - start_coord[1])**2), round_to)
|
18 |
+
|
19 |
+
def step_addition(old_coord, step):
|
20 |
+
return [sum(x) for x in zip(old_coord, step)]
|
21 |
+
|
22 |
+
def step_determination():
|
23 |
+
direction = random.choice(directions)
|
24 |
+
if direction == 'east':
|
25 |
+
return [1*step_size, 0]
|
26 |
+
elif direction == 'west':
|
27 |
+
return [-1*step_size, 0]
|
28 |
+
elif direction == 'north':
|
29 |
+
return [0, 1*step_size]
|
30 |
+
elif direction == 'south':
|
31 |
+
return [0, -1*step_size]
|
32 |
+
|
33 |
+
coordinate_list = [start_point]
|
34 |
+
|
35 |
+
for _ in range(iters):
|
36 |
+
new_step = step_determination()
|
37 |
+
new_coordinate = step_addition(coordinate_list[-1], new_step)
|
38 |
+
coordinate_list.append(new_coordinate)
|
39 |
+
|
40 |
+
x = [i[0] for i in coordinate_list]
|
41 |
+
y = [i[1] for i in coordinate_list]
|
42 |
+
df = pd.DataFrame({'x':x,'y':y})
|
43 |
+
|
44 |
+
|
45 |
+
#Add the axis from the argument to the figure
|
46 |
+
base_marker_size = 10
|
47 |
+
markersize = base_marker_size / np.sqrt(iters)
|
48 |
+
|
49 |
+
plot = ax.plot(x, y, marker='o', markersize=markersize, linestyle='None', alpha=0.5, label = 'Agent {i}'.format(i=agent_number+1))
|
50 |
+
color = plot[0].get_color()
|
51 |
+
ax.plot(x[-1], y[-1], marker='o', markersize=5, color = 'black')
|
52 |
+
ax.text(x[-1], y[-1], 'End {i}'.format(i=agent_number+1), color = 'black', alpha=1.0)
|
53 |
+
|
54 |
+
return ax, df, color
|
55 |
+
|
56 |
+
|
57 |
+
def multi_agent_walk(agent_count, iters, step_size = 1, random_seed = None):
|
58 |
+
assert agent_count >= 1, "Number of agents must be >= than 1"
|
59 |
+
|
60 |
+
def displacement_calc(df):
|
61 |
+
x1,y1 = df.iloc[0]
|
62 |
+
x2,y2 = df.iloc[-1]
|
63 |
+
return np.round(np.sqrt((x2-x1)**2 + (y2-y1)**2),1)
|
64 |
+
|
65 |
+
if random_seed is None:
|
66 |
+
random_seed = random.randint(0,1000000)
|
67 |
+
|
68 |
+
assert type(random_seed) == int, "Random seed must be an integer"
|
69 |
+
#Generate a list of random seeds for each agent
|
70 |
+
random.seed(random_seed)
|
71 |
+
random_numbers = [random.randint(0,100000) for _ in range(agent_count)]
|
72 |
+
|
73 |
+
|
74 |
+
fig, ax = plt.subplots(figsize=(8,8))
|
75 |
+
color_list = []
|
76 |
+
|
77 |
+
for i in range(agent_count):
|
78 |
+
if i == 0:
|
79 |
+
ax, df, color = single_random_walk(iters=iters, ax=ax, step_size=step_size, agent_number=i, random_seed=random_numbers[i])
|
80 |
+
color_list.append(color)
|
81 |
+
|
82 |
+
else:
|
83 |
+
ax, df_new, color = single_random_walk(iters=iters, ax=ax, step_size=step_size, agent_number=i, random_seed=random_numbers[i])
|
84 |
+
df = pd.concat([df,df_new], axis=1)
|
85 |
+
x_columns = [f'x{i}' for i in range(1, i+2)]
|
86 |
+
y_columns = [f'y{i}' for i in range(1, i+2)]
|
87 |
+
new_column_names = [val for pair in zip(x_columns, y_columns) for val in pair]
|
88 |
+
df.columns = new_column_names
|
89 |
+
color_list.append(color)
|
90 |
+
|
91 |
+
ax.plot(0,0, marker='X', markersize=8, color='black')
|
92 |
+
ax.text(0, 0, 'Start (0,0)')
|
93 |
+
|
94 |
+
plt.grid()
|
95 |
+
plt.title('Random 2D Walk with {} agents\n #Steps = {}, Step size = {}, random seed = {}\nAll agents start from the origin'.format(agent_count, iters, step_size, random_seed))
|
96 |
+
|
97 |
+
displacement = [displacement_calc(df.iloc[:,[i,i+1]]) for i in range(0,agent_count*2,2)]
|
98 |
+
end_point = [(df.iloc[-1,i]) for i in range(0,agent_count*2,2)]
|
99 |
+
|
100 |
+
end_point = [(df.iloc[-1,i], df.iloc[-1,i+1]) for i in range(0,agent_count*2,2)]
|
101 |
+
|
102 |
+
agent_number = [i+1 for i in range(agent_count)]
|
103 |
+
legend_df = pd.DataFrame({'#':agent_number, 'dis.':displacement, 'End Point':end_point, })
|
104 |
+
info_box = legend_df.to_string(index=False)
|
105 |
+
|
106 |
+
ax.text(1.01, 0.99, info_box,
|
107 |
+
transform=ax.transAxes,
|
108 |
+
verticalalignment='top',
|
109 |
+
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5)
|
110 |
+
)
|
111 |
+
|
112 |
+
lines = []
|
113 |
+
for i in range(len(color_list)):
|
114 |
+
lines.append(Line2D([0], [0], color=color_list[i], lw=9, linestyle=':'))
|
115 |
+
|
116 |
+
labels = [f'Agent {i+1}' for i in range(len(color_list))]
|
117 |
+
plt.legend(lines, labels,
|
118 |
+
loc='best',
|
119 |
+
handlelength=1.01,
|
120 |
+
handletextpad=0.21,
|
121 |
+
fancybox=True,
|
122 |
+
fontsize=10,
|
123 |
+
)
|
124 |
+
|
125 |
+
fig.canvas.draw()
|
126 |
+
image_array = np.array(fig.canvas.renderer.buffer_rgba())
|
127 |
+
|
128 |
+
try:
|
129 |
+
return image_array, df
|
130 |
+
except:
|
131 |
+
return image_array, None
|
132 |
+
|
133 |
+
|
134 |
+
# _, df = multi_agent_walk(agent_count=9, iters=1e5, step_size=1, random_seed=123);
|
135 |
+
|
136 |
+
|