Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,23 +3,15 @@ import random
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
import torch
|
8 |
import torchvision.transforms.functional as TF
|
9 |
-
|
10 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
11 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
12 |
from controlnet_aux import PidiNetDetector, HEDdetector
|
13 |
from diffusers.utils import load_image
|
14 |
from huggingface_hub import HfApi
|
15 |
from pathlib import Path
|
16 |
-
from PIL import Image, ImageOps
|
17 |
-
import torch
|
18 |
-
import numpy as np
|
19 |
-
import cv2
|
20 |
-
import os
|
21 |
-
import random
|
22 |
-
import spaces
|
23 |
from gradio_imageslider import ImageSlider
|
24 |
|
25 |
js_func = """
|
@@ -27,6 +19,7 @@ function refresh() {
|
|
27 |
const url = new URL(window.location);
|
28 |
}
|
29 |
"""
|
|
|
30 |
def nms(x, t, s):
|
31 |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
32 |
|
@@ -65,7 +58,7 @@ def HWC3(x):
|
|
65 |
DESCRIPTION = ''''''
|
66 |
|
67 |
if not torch.cuda.is_available():
|
68 |
-
DESCRIPTION += ""
|
69 |
|
70 |
style_list = [
|
71 |
{
|
@@ -124,26 +117,17 @@ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
|
124 |
STYLE_NAMES = list(styles.keys())
|
125 |
DEFAULT_STYLE_NAME = "(No style)"
|
126 |
|
127 |
-
|
128 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
129 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
130 |
return p.replace("{prompt}", positive), n + negative
|
131 |
|
132 |
-
|
133 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
134 |
|
135 |
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
136 |
|
|
|
|
|
137 |
|
138 |
-
controlnet = ControlNetModel.from_pretrained(
|
139 |
-
"xinsir/controlnet-scribble-sdxl-1.0",
|
140 |
-
torch_dtype=torch.float16
|
141 |
-
)
|
142 |
-
controlnet_canny = ControlNetModel.from_pretrained(
|
143 |
-
"xinsir/controlnet-canny-sdxl-1.0",
|
144 |
-
torch_dtype=torch.float16
|
145 |
-
)
|
146 |
-
# when test with other base model, you need to change the vae also.
|
147 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
148 |
|
149 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
@@ -154,7 +138,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
154 |
scheduler=eulera_scheduler,
|
155 |
)
|
156 |
pipe.to(device)
|
157 |
-
|
158 |
pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
|
159 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
160 |
controlnet=controlnet_canny,
|
@@ -163,60 +147,51 @@ pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
163 |
torch_dtype=torch.float16,
|
164 |
scheduler=eulera_scheduler,
|
165 |
)
|
166 |
-
|
167 |
pipe_canny.to(device)
|
168 |
|
169 |
MAX_SEED = np.iinfo(np.int32).max
|
170 |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
171 |
-
def nms(x, t, s):
|
172 |
-
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
173 |
-
|
174 |
-
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
175 |
-
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
176 |
-
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
177 |
-
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
178 |
-
|
179 |
-
y = np.zeros_like(x)
|
180 |
-
|
181 |
-
for f in [f1, f2, f3, f4]:
|
182 |
-
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
183 |
|
184 |
-
|
185 |
-
z[y > t] = 255
|
186 |
-
return z
|
187 |
-
|
188 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
189 |
if randomize_seed:
|
190 |
seed = random.randint(0, MAX_SEED)
|
191 |
return seed
|
192 |
|
193 |
-
@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
def run(
|
195 |
-
image
|
196 |
-
prompt
|
197 |
-
negative_prompt
|
198 |
-
style_name
|
199 |
-
num_steps
|
200 |
-
guidance_scale
|
201 |
-
controlnet_conditioning_scale
|
202 |
-
seed
|
203 |
-
use_hed
|
204 |
-
use_canny
|
205 |
progress=gr.Progress(track_tqdm=True),
|
206 |
-
)
|
207 |
-
# Get the composite image from the EditorValue dict
|
208 |
composite_image = image['composite']
|
209 |
width, height = composite_image.size
|
210 |
-
|
211 |
-
# Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio
|
212 |
max_size = 1024
|
213 |
ratio = min(max_size / width, max_size / height)
|
214 |
new_width = int(width * ratio)
|
215 |
new_height = int(height * ratio)
|
216 |
-
|
217 |
-
# Resize the image
|
218 |
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
|
219 |
-
|
220 |
if use_canny:
|
221 |
controlnet_img = np.array(resized_image)
|
222 |
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
@@ -234,11 +209,11 @@ def run(
|
|
234 |
controlnet_img[controlnet_img > random_val] = 255
|
235 |
controlnet_img[controlnet_img < 255] = 0
|
236 |
image = Image.fromarray(controlnet_img)
|
237 |
-
|
238 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
239 |
|
240 |
generator = torch.Generator(device=device).manual_seed(seed)
|
241 |
-
|
242 |
if use_canny:
|
243 |
out = pipe_canny(
|
244 |
prompt=prompt,
|
@@ -270,58 +245,50 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
270 |
gr.Markdown(DESCRIPTION, elem_id="description")
|
271 |
gr.DuplicateButton(
|
272 |
value="Duplicate Space for private use",
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
value=0,
|
318 |
-
)
|
319 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
320 |
-
|
321 |
-
with gr.Column():
|
322 |
-
with gr.Group():
|
323 |
-
image_slider = ImageSlider(position=0.5)
|
324 |
-
|
325 |
|
326 |
inputs = [
|
327 |
image,
|
@@ -336,6 +303,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
336 |
use_canny
|
337 |
]
|
338 |
outputs = [image_slider]
|
|
|
339 |
run_button.click(
|
340 |
fn=randomize_seed_fn,
|
341 |
inputs=[seed, randomize_seed],
|
@@ -345,7 +313,5 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
345 |
).then(lambda x: None, inputs=None, outputs=image_slider).then(
|
346 |
fn=run, inputs=inputs, outputs=outputs
|
347 |
)
|
348 |
-
|
349 |
-
|
350 |
|
351 |
-
demo.queue().launch(show_error=True)
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
from PIL import Image, ImageOps
|
7 |
import torch
|
8 |
import torchvision.transforms.functional as TF
|
|
|
9 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
10 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
11 |
from controlnet_aux import PidiNetDetector, HEDdetector
|
12 |
from diffusers.utils import load_image
|
13 |
from huggingface_hub import HfApi
|
14 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from gradio_imageslider import ImageSlider
|
16 |
|
17 |
js_func = """
|
|
|
19 |
const url = new URL(window.location);
|
20 |
}
|
21 |
"""
|
22 |
+
|
23 |
def nms(x, t, s):
|
24 |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
25 |
|
|
|
58 |
DESCRIPTION = ''''''
|
59 |
|
60 |
if not torch.cuda.is_available():
|
61 |
+
DESCRIPTION += "GPU not available. Using CPU."
|
62 |
|
63 |
style_list = [
|
64 |
{
|
|
|
117 |
STYLE_NAMES = list(styles.keys())
|
118 |
DEFAULT_STYLE_NAME = "(No style)"
|
119 |
|
120 |
+
def apply_style(style_name, positive, negative=""):
|
|
|
121 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
122 |
return p.replace("{prompt}", positive), n + negative
|
123 |
|
|
|
124 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
125 |
|
126 |
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
127 |
|
128 |
+
controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16)
|
129 |
+
controlnet_canny = ControlNetModel.from_pretrained("xinsir/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16)
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
132 |
|
133 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
|
138 |
scheduler=eulera_scheduler,
|
139 |
)
|
140 |
pipe.to(device)
|
141 |
+
|
142 |
pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
|
143 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
144 |
controlnet=controlnet_canny,
|
|
|
147 |
torch_dtype=torch.float16,
|
148 |
scheduler=eulera_scheduler,
|
149 |
)
|
|
|
150 |
pipe_canny.to(device)
|
151 |
|
152 |
MAX_SEED = np.iinfo(np.int32).max
|
153 |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
def randomize_seed_fn(seed, randomize_seed):
|
|
|
|
|
|
|
|
|
156 |
if randomize_seed:
|
157 |
seed = random.randint(0, MAX_SEED)
|
158 |
return seed
|
159 |
|
160 |
+
@gr.annotations(
|
161 |
+
image=dict,
|
162 |
+
prompt=str,
|
163 |
+
negative_prompt=str,
|
164 |
+
style_name=str,
|
165 |
+
num_steps=int,
|
166 |
+
guidance_scale=float,
|
167 |
+
controlnet_conditioning_scale=float,
|
168 |
+
seed=int,
|
169 |
+
use_hed=bool,
|
170 |
+
use_canny=bool,
|
171 |
+
controlnet_img=Image,
|
172 |
+
out=Image,
|
173 |
+
)
|
174 |
def run(
|
175 |
+
image,
|
176 |
+
prompt,
|
177 |
+
negative_prompt,
|
178 |
+
style_name=DEFAULT_STYLE_NAME,
|
179 |
+
num_steps=25,
|
180 |
+
guidance_scale=5,
|
181 |
+
controlnet_conditioning_scale=1.0,
|
182 |
+
seed=0,
|
183 |
+
use_hed=False,
|
184 |
+
use_canny=False,
|
185 |
progress=gr.Progress(track_tqdm=True),
|
186 |
+
):
|
|
|
187 |
composite_image = image['composite']
|
188 |
width, height = composite_image.size
|
|
|
|
|
189 |
max_size = 1024
|
190 |
ratio = min(max_size / width, max_size / height)
|
191 |
new_width = int(width * ratio)
|
192 |
new_height = int(height * ratio)
|
|
|
|
|
193 |
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
|
194 |
+
|
195 |
if use_canny:
|
196 |
controlnet_img = np.array(resized_image)
|
197 |
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
|
|
209 |
controlnet_img[controlnet_img > random_val] = 255
|
210 |
controlnet_img[controlnet_img < 255] = 0
|
211 |
image = Image.fromarray(controlnet_img)
|
212 |
+
|
213 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
214 |
|
215 |
generator = torch.Generator(device=device).manual_seed(seed)
|
216 |
+
|
217 |
if use_canny:
|
218 |
out = pipe_canny(
|
219 |
prompt=prompt,
|
|
|
245 |
gr.Markdown(DESCRIPTION, elem_id="description")
|
246 |
gr.DuplicateButton(
|
247 |
value="Duplicate Space for private use",
|
248 |
+
elem_Multiplier: gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512)
|
249 |
+
prompt: gr.Textbox(label="Prompt")
|
250 |
+
style: gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
251 |
+
use_hed: gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
|
252 |
+
use_canny: gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
|
253 |
+
run_button: gr.Button("Run")
|
254 |
+
gr.Accordion("Advanced options", open=False):
|
255 |
+
negative_prompt: gr.Textbox(
|
256 |
+
label="Negative prompt",
|
257 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
258 |
+
)
|
259 |
+
num_steps: gr.Slider(
|
260 |
+
label="Number of steps",
|
261 |
+
minimum=1,
|
262 |
+
maximum=50,
|
263 |
+
step=1,
|
264 |
+
value=25,
|
265 |
+
)
|
266 |
+
guidance_scale: gr.Slider(
|
267 |
+
label="Guidance scale",
|
268 |
+
minimum=0.1,
|
269 |
+
maximum=10.0,
|
270 |
+
step=0.1,
|
271 |
+
value=5,
|
272 |
+
)
|
273 |
+
controlnet_conditioning_scale: gr.Slider(
|
274 |
+
label="controlnet conditioning scale",
|
275 |
+
minimum=0.5,
|
276 |
+
maximum=5.0,
|
277 |
+
step=0.1,
|
278 |
+
value=0.9,
|
279 |
+
)
|
280 |
+
seed: gr.Slider(
|
281 |
+
label="Seed",
|
282 |
+
minimum=0,
|
283 |
+
maximum=MAX_SEED,
|
284 |
+
step=1,
|
285 |
+
value=0,
|
286 |
+
)
|
287 |
+
randomize_seed: gr.Checkbox(label="Randomize seed", value=True)
|
288 |
+
|
289 |
+
with gr.Column():
|
290 |
+
with gr.Group():
|
291 |
+
image_slider: ImageSlider(position=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
inputs = [
|
294 |
image,
|
|
|
303 |
use_canny
|
304 |
]
|
305 |
outputs = [image_slider]
|
306 |
+
|
307 |
run_button.click(
|
308 |
fn=randomize_seed_fn,
|
309 |
inputs=[seed, randomize_seed],
|
|
|
313 |
).then(lambda x: None, inputs=None, outputs=image_slider).then(
|
314 |
fn=run, inputs=inputs, outputs=outputs
|
315 |
)
|
|
|
|
|
316 |
|
317 |
+
demo.queue().launch(share=True, show_error=True)
|