Update app.py
Browse files
app.py
CHANGED
|
@@ -2,36 +2,53 @@ import gradio as gr
|
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
import io
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
-
def generate_kontext_image(input_image, prompt, width=1024, height=1024, seed=-1, model="
|
| 8 |
"""
|
| 9 |
-
Generate a transformed image using the
|
| 10 |
|
| 11 |
Args:
|
| 12 |
input_image (PIL.Image): Input image to transform.
|
| 13 |
prompt (str): Prompt for the transformation.
|
| 14 |
-
width (int): Width of the output image
|
| 15 |
-
height (int): Height of the output image
|
| 16 |
-
seed (int): Random seed for generation (
|
| 17 |
-
model (str): Model to use (default: '
|
| 18 |
-
nologo (bool): Whether to exclude logo
|
| 19 |
-
enhance (bool): Whether to enhance the image
|
| 20 |
|
| 21 |
Returns:
|
| 22 |
PIL.Image or str: Generated image or error message.
|
| 23 |
"""
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
input_image.save(
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
#
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
#
|
| 34 |
base_url = "https://image.pollinations.ai/prompt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
query_params = {
|
| 36 |
"model": model,
|
| 37 |
"image": input_image_url,
|
|
@@ -41,65 +58,51 @@ def generate_kontext_image(input_image, prompt, width=1024, height=1024, seed=-1
|
|
| 41 |
"nologo": str(nologo).lower(),
|
| 42 |
"enhance": str(enhance).lower()
|
| 43 |
}
|
| 44 |
-
api_url = f"{base_url}/{prompt.replace(' ', '%20')}"
|
| 45 |
|
| 46 |
try:
|
| 47 |
# Make the API request
|
| 48 |
response = requests.get(api_url, params=query_params, stream=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
# Check if the request was successful
|
| 51 |
-
if response.status_code == 200:
|
| 52 |
-
# Convert response content to PIL Image
|
| 53 |
-
output_image = Image.open(io.BytesIO(response.content))
|
| 54 |
-
# Clean up temporary file
|
| 55 |
-
if os.path.exists(temp_image_path):
|
| 56 |
-
os.remove(temp_image_path)
|
| 57 |
-
return output_image
|
| 58 |
-
else:
|
| 59 |
-
return f"Error: API request failed with status code {response.status_code}"
|
| 60 |
except requests.RequestException as e:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
def app_interface(input_image, prompt, width, height, seed, nologo, enhance):
|
| 68 |
"""
|
| 69 |
Gradio interface function to handle user inputs and display results.
|
| 70 |
-
|
| 71 |
-
Args:
|
| 72 |
-
input_image (PIL.Image): Uploaded image.
|
| 73 |
-
prompt (str): Transformation prompt.
|
| 74 |
-
width (int): Output image width.
|
| 75 |
-
height (int): Output image height.
|
| 76 |
-
seed (int): Random seed.
|
| 77 |
-
nologo (bool): Exclude logo.
|
| 78 |
-
enhance (bool): Enhance image.
|
| 79 |
-
|
| 80 |
-
Returns:
|
| 81 |
-
PIL.Image or str: Generated image or error message.
|
| 82 |
"""
|
| 83 |
if input_image is None:
|
| 84 |
return "Please upload an image."
|
| 85 |
if not prompt:
|
| 86 |
return "Please provide a prompt."
|
| 87 |
|
|
|
|
| 88 |
return generate_kontext_image(
|
| 89 |
input_image=input_image,
|
| 90 |
prompt=prompt,
|
| 91 |
width=width,
|
| 92 |
height=height,
|
| 93 |
seed=seed,
|
| 94 |
-
model="
|
| 95 |
nologo=nologo,
|
| 96 |
enhance=enhance
|
| 97 |
)
|
| 98 |
|
| 99 |
# Define the Gradio interface
|
| 100 |
-
with gr.Blocks(title="
|
| 101 |
-
gr.Markdown("#
|
| 102 |
-
gr.Markdown("Upload an image, provide a transformation prompt, and generate a new image
|
| 103 |
|
| 104 |
with gr.Row():
|
| 105 |
with gr.Column():
|
|
|
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
import io
|
|
|
|
| 5 |
|
| 6 |
+
def generate_kontext_image(input_image, prompt, width=1024, height=1024, seed=-1, model="dreamshaper", nologo=True, enhance=False):
|
| 7 |
"""
|
| 8 |
+
Generate a transformed image using the Pollinations API.
|
| 9 |
|
| 10 |
Args:
|
| 11 |
input_image (PIL.Image): Input image to transform.
|
| 12 |
prompt (str): Prompt for the transformation.
|
| 13 |
+
width (int): Width of the output image.
|
| 14 |
+
height (int): Height of the output image.
|
| 15 |
+
seed (int): Random seed for generation (-1 for random).
|
| 16 |
+
model (str): Model to use (default: 'dreamshaper').
|
| 17 |
+
nologo (bool): Whether to exclude logo.
|
| 18 |
+
enhance (bool): Whether to enhance the image.
|
| 19 |
|
| 20 |
Returns:
|
| 21 |
PIL.Image or str: Generated image or error message.
|
| 22 |
"""
|
| 23 |
+
# Step 1: Convert the input PIL Image to bytes for uploading.
|
| 24 |
+
image_bytes = io.BytesIO()
|
| 25 |
+
input_image.save(image_bytes, format='JPEG')
|
| 26 |
+
image_bytes.seek(0)
|
| 27 |
+
|
| 28 |
+
input_image_url = ""
|
| 29 |
+
# Step 2: Upload the image bytes to get a public URL.
|
| 30 |
+
try:
|
| 31 |
+
upload_response = requests.post(
|
| 32 |
+
'https://image.pollinations.ai/upload',
|
| 33 |
+
files={'file': ('input_image.jpg', image_bytes, 'image/jpeg')}
|
| 34 |
+
)
|
| 35 |
+
upload_response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
| 36 |
+
upload_result = upload_response.json()
|
| 37 |
+
input_image_url = upload_result.get('ipfs')
|
| 38 |
+
|
| 39 |
+
if not input_image_url:
|
| 40 |
+
return "Error: Could not retrieve a public URL after uploading the image."
|
| 41 |
+
|
| 42 |
+
except requests.RequestException as e:
|
| 43 |
+
return f"Error: Failed to upload the image to the server - {e}"
|
| 44 |
|
| 45 |
+
# Step 3: Use the public URL to make the final image generation request.
|
| 46 |
base_url = "https://image.pollinations.ai/prompt"
|
| 47 |
+
|
| 48 |
+
# URL-encode the prompt to handle spaces and special characters
|
| 49 |
+
encoded_prompt = requests.utils.quote(prompt)
|
| 50 |
+
api_url = f"{base_url}/{encoded_prompt}"
|
| 51 |
+
|
| 52 |
query_params = {
|
| 53 |
"model": model,
|
| 54 |
"image": input_image_url,
|
|
|
|
| 58 |
"nologo": str(nologo).lower(),
|
| 59 |
"enhance": str(enhance).lower()
|
| 60 |
}
|
|
|
|
| 61 |
|
| 62 |
try:
|
| 63 |
# Make the API request
|
| 64 |
response = requests.get(api_url, params=query_params, stream=True)
|
| 65 |
+
response.raise_for_status()
|
| 66 |
+
|
| 67 |
+
# Convert response content to a PIL Image and return it
|
| 68 |
+
output_image = Image.open(io.BytesIO(response.content))
|
| 69 |
+
return output_image
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
except requests.RequestException as e:
|
| 72 |
+
error_details = str(e)
|
| 73 |
+
try:
|
| 74 |
+
# Try to get a more specific error message from the API response
|
| 75 |
+
error_details = e.response.json().get("message", e.response.text)
|
| 76 |
+
except:
|
| 77 |
+
pass # Keep the original exception text if parsing fails
|
| 78 |
+
return f"Error: API request failed. Details: {error_details}"
|
| 79 |
+
|
| 80 |
|
| 81 |
def app_interface(input_image, prompt, width, height, seed, nologo, enhance):
|
| 82 |
"""
|
| 83 |
Gradio interface function to handle user inputs and display results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
"""
|
| 85 |
if input_image is None:
|
| 86 |
return "Please upload an image."
|
| 87 |
if not prompt:
|
| 88 |
return "Please provide a prompt."
|
| 89 |
|
| 90 |
+
# Using 'dreamshaper' as it's a free and effective model for this task
|
| 91 |
return generate_kontext_image(
|
| 92 |
input_image=input_image,
|
| 93 |
prompt=prompt,
|
| 94 |
width=width,
|
| 95 |
height=height,
|
| 96 |
seed=seed,
|
| 97 |
+
model="dreamshaper",
|
| 98 |
nologo=nologo,
|
| 99 |
enhance=enhance
|
| 100 |
)
|
| 101 |
|
| 102 |
# Define the Gradio interface
|
| 103 |
+
with gr.Blocks(title="Image Transformation") as demo:
|
| 104 |
+
gr.Markdown("# Image Transformation App")
|
| 105 |
+
gr.Markdown("Upload an image, provide a transformation prompt, and generate a new image.")
|
| 106 |
|
| 107 |
with gr.Row():
|
| 108 |
with gr.Column():
|