Spaces:
Paused
Paused
import os | |
from collections import OrderedDict | |
import gradio as gr | |
import shutil | |
import uuid | |
import torch | |
from pathlib import Path | |
from lib.utils.iimage import IImage | |
from PIL import Image | |
from lib import models | |
from lib.methods import rasg, sd, sr | |
from lib.utils import poisson_blend, image_from_url_text | |
TMP_DIR = 'gradio_tmp' | |
if Path(TMP_DIR).exists(): | |
shutil.rmtree(TMP_DIR) | |
Path(TMP_DIR).mkdir(exist_ok=True, parents=True) | |
os.environ['GRADIO_TEMP_DIR'] = TMP_DIR | |
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR" | |
negative_prompt_str = "text, bad anatomy, bad proportions, blurry, cropped, deformed, disfigured, duplicate, error, extra limbs, gross proportions, jpeg artifacts, long neck, low quality, lowres, malformed, morbid, mutated, mutilated, out of frame, ugly, worst quality" | |
positive_prompt_str = "Full HD, 4K, high quality, high resolution" | |
example_inputs = [ | |
['assets/examples/images_1024/a40.jpg', 'assets/examples/images_2048/a40.jpg', 'medieval castle'], | |
['assets/examples/images_1024/a4.jpg', 'assets/examples/images_2048/a4.jpg', 'parrot'], | |
['assets/examples/images_1024/a65.jpg', 'assets/examples/images_2048/a65.jpg', 'hoodie'], | |
['assets/examples/images_1024/a54.jpg', 'assets/examples/images_2048/a54.jpg', 'salad'], | |
['assets/examples/images_1024/a51.jpg', 'assets/examples/images_2048/a51.jpg', 'space helmet'], | |
['assets/examples/images_1024/a46.jpg', 'assets/examples/images_2048/a46.jpg', 'stack of books'], | |
['assets/examples/images_1024/a19.jpg', 'assets/examples/images_2048/a19.jpg', 'antique greek vase'], | |
['assets/examples/images_1024/a2.jpg', 'assets/examples/images_2048/a2.jpg', 'sunglasses'], | |
] | |
thumbnails = [ | |
'https://lh3.googleusercontent.com/pw/ABLVV87bkFc_SRKrbXuk5BTp18dETNm18MLbjoJo6JvwbIkYtjZXrjU_H1dCJIP799OJjHTZmo19mYVyMCC1RLmwqzoZrgwQzfB-SCtxLa83IbXBQ23xzmKoZgsRlPztxNJD6gmXzFyatdLRzDxHIusBQLUz=w3580-h1150-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV85RWtrpTf1tMp2p3q37eg5DlFp5znifALK_JTjvxJua8UYMjytVoEy2GUW2cLXgBvQyYKg7GvrWXQ5hkdAsyih5Rf4rFnDq-JoiQYhVZHStCZLKxmeAlQna5ZwMPVTKG1TK63DH_OdK58gvSjWtF2ww=w3580-h1152-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV84dkaU6SQs9fyDjajpk1X9JkYp_zQBEnPVL67oi11_05U6-Ys5ydQpuny8GBQCMyVbFKxJ5unn9w__gmP9K0cKQ4_IVoT7Hvfmya71klDqSI7vu9Iy_5P2Il5-0giJFpumtffBA3kryn1xtJdR4vSA0=w2924-h1858-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV853ZyjvS4LvcPpVMY9BWz-232omt3-hgRiGcky_3ojE6WLKgtsrftsg1jSrUm2ccT_UOa279CulZy6fdnH_Xg1SunyRBxaRjOK0uxAkUFwb60rR1S4hI2MmhLV7KCi3tw1A-oiGi0f9JINyade-322A=w2622-h1858-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV86AJGUVGjb0i6CPg8zlJlWObNY0xdOzM1x5Bq9gKhP-ZWre5aaexRJDxQUO2gmJtRIyohD88FJDG_aVX2G5M0QOyGRWlZmx7tOVXLh-Kbesobxo9MfD-wqk9Ts9O8NUGtIwkWzo9SEs2opKdu83gB9F=w2528-h1858-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV87MplTciS7z-4i-eY3B3L0YhaK8UEQ3pTQD6W6uYVGR4hPD9u1WGEGyfg5ddqU-Bx2BrKskDhwxzF746cRhgFU5aPtbYA_-O7KfqXe9IsMxYCgUKxEHBm2ncqy64V-w-N8XOFgUMkAQqcuuNZ8Xapqp=w3580-h1186-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV877Esi6l2Kuw3akH5QBlmDAbWydZDZEEJqlZ_N-X7g33NQZU8nv_UKdAVETS7q23byTuldIAhW-q99zCycFB8Yfc-5e_WPNIM9icU0p3gd6DUVZR233ZNUtLca384MYGIhMGud9Y_Xed1I3PpiMhrpG=w2846-h1858-s-no-gm', | |
'https://lh3.googleusercontent.com/pw/ABLVV85hMQbSB6fCokdyut4ke7xTUqjERhuYygnj7T8IIA1k48e9GkaowDywPZzi5QJzZfj7wU3bgBHzjxop19qK1zOi5XDrjfXkn5bwj4MxicHa3TG-Rc-V-c1uyZVUyviyUlkGZ62FxuVROw2x0aGJIcr0=w3580-h1382-s-no-gm' | |
] | |
example_previews = [ | |
[thumbnails[0], 'Prompt: medieval castle'], | |
[thumbnails[1], 'Prompt: parrot'], | |
[thumbnails[2], 'Prompt: hoodie'], | |
[thumbnails[3], 'Prompt: salad'], | |
[thumbnails[4], 'Prompt: space helmet'], | |
[thumbnails[5], 'Prompt: stack of books'], | |
[thumbnails[6], 'Prompt: antique greek vase'], | |
[thumbnails[7], 'Prompt: sunglasses'], | |
] | |
# Load models | |
inpainting_models = OrderedDict([ | |
("Dreamshaper Inpainting V8", models.ds_inp.load_model()), | |
("Stable-Inpainting 2.0", models.sd2_inp.load_model()), | |
("Stable-Inpainting 1.5", models.sd15_inp.load_model()) | |
]) | |
sr_model = models.sd2_sr.load_model(device='cuda:1') | |
sam_predictor = models.sam.load_model(device='cuda:0') | |
inp_model = inpainting_models[list(inpainting_models.keys())[0]] | |
def set_model_from_name(inp_model_name): | |
global inp_model | |
print (f"Activating Inpaintng Model: {inp_model_name}") | |
inp_model = inpainting_models[inp_model_name] | |
def save_user_session(hr_image, hr_mask, lr_results, prompt, session_id=None): | |
if session_id == '': | |
session_id = str(uuid.uuid4()) | |
tmp_dir = Path(TMP_DIR) | |
session_dir = tmp_dir / session_id | |
session_dir.mkdir(exist_ok=True, parents=True) | |
hr_image.save(session_dir / 'hr_image.png') | |
hr_mask.save(session_dir / 'hr_mask.png') | |
lr_results_dir = session_dir / 'lr_results' | |
if lr_results_dir.exists(): | |
shutil.rmtree(lr_results_dir) | |
lr_results_dir.mkdir(parents=True) | |
for i, lr_result in enumerate(lr_results): | |
lr_result.save(lr_results_dir / f'{i}.png') | |
with open(session_dir / 'prompt.txt', 'w') as f: | |
f.write(prompt) | |
return session_id | |
def recover_user_session(session_id): | |
if session_id == '': | |
return None, None, [], '' | |
tmp_dir = Path(TMP_DIR) | |
session_dir = tmp_dir / session_id | |
lr_results_dir = session_dir / 'lr_results' | |
hr_image = Image.open(session_dir / 'hr_image.png') | |
hr_mask = Image.open(session_dir / 'hr_mask.png') | |
lr_result_paths = list(lr_results_dir.glob('*.png')) | |
gallery = [] | |
for lr_result_path in sorted(lr_result_paths): | |
gallery.append(Image.open(lr_result_path)) | |
with open(session_dir / 'prompt.txt', "r") as f: | |
prompt = f.read() | |
return hr_image, hr_mask, gallery, prompt | |
def rasg_run( | |
use_painta, prompt, imageMask, hr_image, seed, eta, | |
negative_prompt, positive_prompt, ddim_steps, | |
guidance_scale=7.5, | |
batch_size=1, session_id='' | |
): | |
torch.cuda.empty_cache() | |
seed = int(seed) | |
batch_size = max(1, min(int(batch_size), 4)) | |
image = IImage(hr_image).resize(512) | |
mask = IImage(imageMask['mask']).rgb().resize(512) | |
method = ['rasg'] | |
if use_painta: method.append('painta') | |
method = '-'.join(method) | |
inpainted_images = [] | |
blended_images = [] | |
for i in range(batch_size): | |
seed = seed + i * 1000 | |
inpainted_image = rasg.run( | |
ddim=inp_model, | |
method=method, | |
prompt=prompt, | |
image=image, | |
mask=mask, | |
seed=seed, | |
eta=eta, | |
negative_prompt=negative_prompt, | |
positive_prompt=positive_prompt, | |
num_steps=ddim_steps, | |
guidance_scale=guidance_scale | |
).crop(image.size) | |
blended_image = poisson_blend( | |
orig_img=image.data[0], | |
fake_img=inpainted_image.data[0], | |
mask=mask.data[0], | |
dilation=12 | |
) | |
blended_images.append(blended_image) | |
inpainted_images.append(inpainted_image.pil()) | |
session_id = save_user_session( | |
hr_image, imageMask['mask'], inpainted_images, prompt, session_id=session_id) | |
return blended_images, session_id | |
def sd_run(use_painta, prompt, imageMask, hr_image, seed, eta, | |
negative_prompt, positive_prompt, ddim_steps, | |
guidance_scale=7.5, | |
batch_size=1, session_id='' | |
): | |
torch.cuda.empty_cache() | |
seed = int(seed) | |
batch_size = max(1, min(int(batch_size), 4)) | |
image = IImage(hr_image).resize(512) | |
mask = IImage(imageMask['mask']).rgb().resize(512) | |
method = ['default'] | |
if use_painta: method.append('painta') | |
method = '-'.join(method) | |
inpainted_images = [] | |
blended_images = [] | |
for i in range(batch_size): | |
seed = seed + i * 1000 | |
inpainted_image = sd.run( | |
ddim=inp_model, | |
method=method, | |
prompt=prompt, | |
image=image, | |
mask=mask, | |
seed=seed, | |
eta=eta, | |
negative_prompt=negative_prompt, | |
positive_prompt=positive_prompt, | |
num_steps=ddim_steps, | |
guidance_scale=guidance_scale | |
).crop(image.size) | |
blended_image = poisson_blend( | |
orig_img=image.data[0], | |
fake_img=inpainted_image.data[0], | |
mask=mask.data[0], | |
dilation=12 | |
) | |
blended_images.append(blended_image) | |
inpainted_images.append(inpainted_image.pil()) | |
session_id = save_user_session( | |
hr_image, imageMask['mask'], inpainted_images, prompt, session_id=session_id) | |
return blended_images, session_id | |
def upscale_run( | |
ddim_steps, seed, use_sam_mask, session_id, img_index, | |
negative_prompt='', | |
positive_prompt=', high resolution professional photo' | |
): | |
hr_image, hr_mask, gallery, prompt = recover_user_session(session_id) | |
if len(gallery) == 0: | |
return Image.open('./assets/sr_info.png') | |
torch.cuda.empty_cache() | |
seed = int(seed) | |
img_index = int(img_index) | |
img_index = 0 if img_index < 0 else img_index | |
img_index = len(gallery) - 1 if img_index >= len(gallery) else img_index | |
inpainted_image = gallery[img_index if img_index >= 0 else 0] | |
output_image = sr.run( | |
sr_model, | |
sam_predictor, | |
inpainted_image, | |
hr_image, | |
hr_mask, | |
prompt=prompt + positive_prompt, | |
noise_level=20, | |
blend_trick=True, | |
blend_output=True, | |
negative_prompt=negative_prompt, | |
seed=seed, | |
use_sam_mask=use_sam_mask | |
) | |
return output_image | |
def switch_run(use_rasg, model_name, *args): | |
set_model_from_name(model_name) | |
if use_rasg: | |
return rasg_run(*args) | |
return sd_run(*args) | |
with gr.Blocks(css='style.css') as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 1200px; margin: 20px auto;"> | |
<h1 style="font-weight: 900; font-size: 3rem; margin-bottom: 0.5rem"> | |
🧑🎨 HD-Painter Demo | |
</h1> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
Hayk Manukyan<sup>1*</sup>, Andranik Sargsyan<sup>1*</sup>, Barsegh Atanyan<sup>1</sup>, Zhangyang Wang<sup>1,2</sup>, Shant Navasardyan<sup>1</sup> | |
and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a><sup>1,3</sup> | |
</h2> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
<sup>1</sup>Picsart AI Resarch (PAIR), <sup>2</sup>UT Austin, <sup>3</sup>Georgia Tech | |
</h2> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
[<a href="https://arxiv.org/abs/2312.14091" style="color:blue;">arXiv</a>] | |
[<a href="https://github.com/Picsart-AI-Research/HD-Painter" style="color:blue;">GitHub</a>] | |
</h2> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0.7rem auto; max-width: 1000px"> | |
<b>HD-Painter</b> enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method. | |
</h2> | |
</div> | |
""") | |
if on_huggingspace: | |
gr.HTML(""" | |
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to the suggested GPU in settings. | |
<br/> | |
<a href="https://huggingface.co/spaces/PAIR/HD-Painter?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
</p>""") | |
with open('script.js', 'r') as f: | |
js_str = f.read() | |
demo.load(_js=js_str) | |
with gr.Row(): | |
with gr.Column(): | |
model_picker = gr.Dropdown( | |
list(inpainting_models.keys()), | |
value=list(inpainting_models.keys())[0], | |
label = "Please select a model!", | |
) | |
with gr.Column(): | |
use_painta = gr.Checkbox(value = True, label = "Use PAIntA") | |
use_rasg = gr.Checkbox(value = True, label = "Use RASG") | |
prompt = gr.Textbox(label = "Inpainting Prompt") | |
with gr.Row(): | |
with gr.Column(): | |
imageMask = gr.ImageMask(label = "Input Image", brush_color='#ff0000', elem_id="inputmask", type="pil") | |
hr_image = gr.Image(visible=False, type="pil") | |
hr_image.change(fn=None, _js="function() {setTimeout(imageMaskResize, 200);}", inputs=[], outputs=[]) | |
imageMask.upload( | |
fn=None, | |
_js="async function (a) {hr_img = await resize_b64_img(a['image'], 2048); dp_img = await resize_b64_img(hr_img, 1024); return [hr_img, {image: dp_img, mask: null}]}", | |
inputs=[imageMask], | |
outputs=[hr_image, imageMask], | |
) | |
with gr.Row(): | |
inpaint_btn = gr.Button("Inpaint", scale = 0) | |
with gr.Accordion('Advanced options', open=False): | |
guidance_scale = gr.Slider(minimum = 0, maximum = 30, value = 7.5, label = "Guidance Scale") | |
eta = gr.Slider(minimum = 0, maximum = 1, value = 0.1, label = "eta") | |
ddim_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = 'Number of diffusion steps') | |
with gr.Row(): | |
seed = gr.Number(value = 49123, label = "Seed") | |
batch_size = gr.Number(value = 1, label = "Batch size", minimum=1, maximum=4) | |
negative_prompt = gr.Textbox(value=negative_prompt_str, label = "Negative prompt", lines=3) | |
positive_prompt = gr.Textbox(value=positive_prompt_str, label = "Positive prompt", lines=1) | |
with gr.Column(): | |
with gr.Row(): | |
output_gallery = gr.Gallery( | |
[], | |
columns = 4, | |
preview = True, | |
allow_preview = True, | |
object_fit='scale-down', | |
elem_id='outputgallery' | |
) | |
with gr.Row(): | |
upscale_btn = gr.Button("Send to Inpainting-Specialized Super-Resolution (x4)", scale = 1) | |
with gr.Row(): | |
use_sam_mask = gr.Checkbox(value = False, label = "Use SAM mask for background preservation (for SR only, experimental feature)") | |
with gr.Row(): | |
hires_image = gr.Image(label = "Hi-res Image") | |
label = gr.Markdown("## High-Resolution Generation Samples (2048px large side)") | |
with gr.Column(): | |
example_container = gr.Gallery( | |
example_previews, | |
columns = 4, | |
preview = True, | |
allow_preview = True, | |
object_fit='scale-down' | |
) | |
gr.Examples( | |
[example_inputs[i] + [[example_previews[i]]] | |
for i in range(len(example_previews))], | |
[imageMask, hr_image, prompt, example_container], | |
elem_id='examples' | |
) | |
session_id = gr.Textbox(value='', visible=False) | |
html_info = gr.HTML(elem_id=f'html_info', elem_classes="infotext") | |
inpaint_btn.click( | |
fn=switch_run, | |
inputs=[ | |
use_rasg, | |
model_picker, | |
use_painta, | |
prompt, | |
imageMask, | |
hr_image, | |
seed, | |
eta, | |
negative_prompt, | |
positive_prompt, | |
ddim_steps, | |
guidance_scale, | |
batch_size, | |
session_id | |
], | |
outputs=[output_gallery, session_id], | |
api_name="inpaint" | |
) | |
upscale_btn.click( | |
fn=upscale_run, | |
inputs=[ | |
ddim_steps, | |
seed, | |
use_sam_mask, | |
session_id, | |
html_info | |
], | |
outputs=[hires_image], | |
api_name="upscale", | |
_js="function(a, b, c, d, e){ return [a, b, c, d, selected_gallery_index()] }", | |
) | |
demo.queue(max_size=20) | |
demo.launch(share=True, allowed_paths=[TMP_DIR]) |