Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from einops import rearrange
|
7 |
+
import requests
|
8 |
+
import spaces
|
9 |
+
from huggingface_hub import login
|
10 |
+
from gradio_imageslider import ImageSlider # Import ImageSlider
|
11 |
+
|
12 |
+
from image_datasets.canny_dataset import canny_processor, c_crop
|
13 |
+
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
|
14 |
+
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
|
15 |
+
|
16 |
+
# Define the ModelSamplingFlux class
|
17 |
+
class ModelSamplingFlux(torch.nn.Module):
|
18 |
+
def __init__(self, model_config=None):
|
19 |
+
super().__init__()
|
20 |
+
if model_config is not None:
|
21 |
+
sampling_settings = model_config.get("sampling_settings", {})
|
22 |
+
else:
|
23 |
+
sampling_settings = {}
|
24 |
+
|
25 |
+
self.set_parameters(shift=sampling_settings.get("shift", 1.15))
|
26 |
+
|
27 |
+
def set_parameters(self, shift=1.15, timesteps=10000):
|
28 |
+
self.shift = shift
|
29 |
+
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
|
30 |
+
self.register_buffer('sigmas', ts)
|
31 |
+
|
32 |
+
@property
|
33 |
+
def sigma_min(self):
|
34 |
+
return self.sigmas[0]
|
35 |
+
|
36 |
+
@property
|
37 |
+
def sigma_max(self):
|
38 |
+
return self.sigmas[-1]
|
39 |
+
|
40 |
+
def timestep(self, sigma):
|
41 |
+
return sigma
|
42 |
+
|
43 |
+
def sigma(self, timestep):
|
44 |
+
return flux_time_shift(self.shift, 1.0, timestep)
|
45 |
+
|
46 |
+
def percent_to_sigma(self, percent):
|
47 |
+
if percent <= 0.0:
|
48 |
+
return 1.0
|
49 |
+
if percent >= 1.0:
|
50 |
+
return 0.0
|
51 |
+
return 1.0 - percent
|
52 |
+
|
53 |
+
# Download and load the ControlNet model
|
54 |
+
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
|
55 |
+
model_path = "./flux-canny-controlnet-v3.safetensors"
|
56 |
+
if not os.path.exists(model_path):
|
57 |
+
response = requests.get(model_url)
|
58 |
+
with open(model_path, 'wb') as f:
|
59 |
+
f.write(response.content)
|
60 |
+
|
61 |
+
# Source: https://github.com/XLabs-AI/x-flux.git
|
62 |
+
name = "flux-dev"
|
63 |
+
device = torch.device("cuda")
|
64 |
+
offload = False
|
65 |
+
is_schnell = name == "flux-schnell"
|
66 |
+
|
67 |
+
def preprocess_image(image, target_width, target_height, crop=True):
|
68 |
+
if crop:
|
69 |
+
image = c_crop(image) # Crop the image to square
|
70 |
+
original_width, original_height = image.size
|
71 |
+
|
72 |
+
# Resize to match the target size without stretching
|
73 |
+
scale = max(target_width / original_width, target_height / original_height)
|
74 |
+
resized_width = int(scale * original_width)
|
75 |
+
resized_height = int(scale * original_height)
|
76 |
+
|
77 |
+
image = image.resize((resized_width, resized_height), Image.LANCZOS)
|
78 |
+
|
79 |
+
# Center crop to match the target dimensions
|
80 |
+
left = (resized_width - target_width) // 2
|
81 |
+
top = (resized_height - target_height) // 2
|
82 |
+
image = image.crop((left, top, left + target_width, top + target_height))
|
83 |
+
return image
|
84 |
+
|
85 |
+
def preprocess_canny_image(image, target_width, target_height, crop=True):
|
86 |
+
image = preprocess_image(image, target_width, target_height, crop=crop)
|
87 |
+
image = canny_processor(image)
|
88 |
+
return image
|
89 |
+
|
90 |
+
@spaces.GPU(duration=120)
|
91 |
+
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False, max_shift=1.5, base_shift=1.15):
|
92 |
+
if random_seed:
|
93 |
+
seed = np.random.randint(0, 10000000)
|
94 |
+
|
95 |
+
if not os.path.isdir("./controlnet_results/"):
|
96 |
+
os.makedirs("./controlnet_results/")
|
97 |
+
|
98 |
+
torch_device = torch.device("cuda")
|
99 |
+
|
100 |
+
torch.cuda.empty_cache() # Clear GPU cache
|
101 |
+
|
102 |
+
model = load_flow_model(name, device=torch_device)
|
103 |
+
t5 = load_t5(torch_device, max_length=256 if is_schnell else 512)
|
104 |
+
clip = load_clip(torch_device)
|
105 |
+
ae = load_ae(name, device=torch_device)
|
106 |
+
controlnet = load_controlnet(name, torch_device).to(torch_device).to(torch.bfloat16)
|
107 |
+
|
108 |
+
checkpoint = load_safetensors(model_path)
|
109 |
+
controlnet.load_state_dict(checkpoint, strict=False)
|
110 |
+
|
111 |
+
width = 16 * width // 16
|
112 |
+
height = 16 * height // 16
|
113 |
+
|
114 |
+
# Initialize ModelSamplingFlux with the provided shifts
|
115 |
+
sampling_model = ModelSamplingFlux()
|
116 |
+
sampling_model.set_parameters(shift=base_shift, timesteps=num_steps)
|
117 |
+
|
118 |
+
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=max_shift)
|
119 |
+
|
120 |
+
processed_input = preprocess_image(control_image, width, height)
|
121 |
+
canny_processed = preprocess_canny_image(control_image, width, height)
|
122 |
+
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
|
123 |
+
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
|
124 |
+
|
125 |
+
torch.manual_seed(seed)
|
126 |
+
with torch.no_grad():
|
127 |
+
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
|
128 |
+
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
129 |
+
|
130 |
+
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
|
131 |
+
|
132 |
+
x = unpack(x.float(), height, width)
|
133 |
+
x = ae.decode(x)
|
134 |
+
|
135 |
+
x1 = x.clamp(-1, 1)
|
136 |
+
x1 = rearrange(x1[-1], "c h w -> h w c")
|
137 |
+
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
|
138 |
+
|
139 |
+
return [processed_input, output_img] # Return both images for slider
|
140 |
+
|
141 |
+
interface = gr.Interface(
|
142 |
+
fn=generate_image,
|
143 |
+
inputs=[
|
144 |
+
gr.Textbox(label="Prompt"),
|
145 |
+
gr.Image(type="pil", label="Control Image"),
|
146 |
+
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
147 |
+
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
148 |
+
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"),
|
149 |
+
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"),
|
150 |
+
gr.Slider(minimum=0, maximum=9999999, step=1, value=42, label="Seed"),
|
151 |
+
gr.Checkbox(label="Random Seed"),
|
152 |
+
gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.5, label="Max Shift"),
|
153 |
+
gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.15, label="Base Shift")
|
154 |
+
],
|
155 |
+
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
156 |
+
title="FLUX.1 Controlnet Canny",
|
157 |
+
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
interface.launch()
|