Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,35 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
scheduler = DPMSolverMultistepScheduler(
|
10 |
-
beta_start=0.00085,
|
11 |
-
beta_end=0.012,
|
12 |
-
beta_schedule="scaled_linear",
|
13 |
-
num_train_timesteps=1000,
|
14 |
-
trained_betas=None,
|
15 |
-
predict_epsilon=True,
|
16 |
-
thresholding=True,
|
17 |
-
algorithm_type="dpmsolver++",
|
18 |
-
solver_type="midpoint",
|
19 |
-
lower_order_final=True,
|
20 |
-
)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
30 |
-
scheduler=scheduler)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
pipe_i2i = pipe_i2i.to("cuda")
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
{error}""" if error else ""
|
39 |
|
40 |
-
def
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
|
48 |
-
else:
|
49 |
-
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
|
50 |
-
except Exception as e:
|
51 |
-
return None, error_str(e)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
result = pipe(
|
56 |
-
prompt,
|
57 |
-
negative_prompt = neg_prompt,
|
58 |
-
num_inference_steps = int(steps),
|
59 |
-
guidance_scale = guidance,
|
60 |
-
width = width,
|
61 |
-
height = height,
|
62 |
-
generator = generator)
|
63 |
-
|
64 |
-
return replace_nsfw_images(result)
|
65 |
-
|
66 |
-
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
|
67 |
-
|
68 |
-
ratio = min(height / img.height, width / img.width)
|
69 |
-
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
70 |
-
result = pipe_i2i(
|
71 |
-
prompt,
|
72 |
-
negative_prompt = neg_prompt,
|
73 |
-
init_image = img,
|
74 |
-
num_inference_steps = int(steps),
|
75 |
-
strength = strength,
|
76 |
-
guidance_scale = guidance,
|
77 |
-
width = width,
|
78 |
-
height = height,
|
79 |
-
generator = generator)
|
80 |
-
|
81 |
-
return replace_nsfw_images(result)
|
82 |
-
|
83 |
-
def replace_nsfw_images(results):
|
84 |
-
|
85 |
-
for i in range(len(results.images)):
|
86 |
-
if results.nsfw_content_detected[i]:
|
87 |
-
results.images[i] = Image.open("nsfw.png")
|
88 |
-
return results.images[0]
|
89 |
-
|
90 |
-
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
91 |
-
"""
|
92 |
-
with gr.Blocks(css=css) as demo:
|
93 |
-
gr.HTML(
|
94 |
-
f"""
|
95 |
-
<div class="main-div">
|
96 |
-
<div>
|
97 |
-
<h1>Stable Diffusion 2</h1>
|
98 |
-
</div>
|
99 |
-
<p>
|
100 |
-
Demo for <a href="https://huggingface.co/stabilityai/stable-diffusion-2">Stable Diffusion 2</a> Stable Diffusion model.<br>
|
101 |
-
Add the following tokens to your prompts for the model to work properly: <b></b>.
|
102 |
-
</p>
|
103 |
-
Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b>
|
104 |
-
</div>
|
105 |
-
"""
|
106 |
-
)
|
107 |
-
with gr.Row():
|
108 |
-
|
109 |
-
with gr.Column(scale=55):
|
110 |
-
with gr.Group():
|
111 |
-
with gr.Row():
|
112 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
|
113 |
-
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
114 |
-
|
115 |
-
image_out = gr.Image(height=512)
|
116 |
-
error_output = gr.Markdown()
|
117 |
-
|
118 |
-
with gr.Column(scale=45):
|
119 |
-
with gr.Tab("Options"):
|
120 |
-
with gr.Group():
|
121 |
-
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
122 |
-
auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=True)
|
123 |
-
|
124 |
-
with gr.Row():
|
125 |
-
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
126 |
-
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
|
127 |
-
|
128 |
-
with gr.Row():
|
129 |
-
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
130 |
-
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
131 |
-
|
132 |
-
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
133 |
-
|
134 |
-
with gr.Tab("Image to image"):
|
135 |
-
with gr.Group():
|
136 |
-
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
137 |
-
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
138 |
-
|
139 |
-
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
|
140 |
-
|
141 |
-
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
|
142 |
-
outputs = [image_out, error_output]
|
143 |
-
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
144 |
-
generate.click(inference, inputs=inputs, outputs=outputs)
|
145 |
-
|
146 |
-
gr.HTML("""
|
147 |
-
<div style="border-top: 1px solid #303030;">
|
148 |
-
<br>
|
149 |
-
<p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p>
|
150 |
-
</div>
|
151 |
-
""")
|
152 |
-
|
153 |
-
demo.queue(concurrency_count=1)
|
154 |
-
demo.launch()
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import transformers
|
|
|
|
|
3 |
|
4 |
+
# Load the model
|
5 |
+
model = transformers.TFGPT2LMHeadModel.from_pretrained("souleater-diffusion.ckpt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Generate pictures using the model
|
8 |
+
def generate_picture(prompt):
|
9 |
+
input_ids = transformers.preprocessing.text.text_to_sequence(prompt, model.tokenizer.tokenize)
|
10 |
+
input_ids = tf.expand_dims(input_ids, 0)
|
11 |
+
output = model.generate(input_ids)
|
12 |
+
generated_text = model.tokenizer.decode(output[0], skip_special_tokens=True)
|
13 |
+
return generated_text
|
14 |
|
15 |
+
# GUI to enter the prompts
|
16 |
+
from tkinter import *
|
|
|
|
|
17 |
|
18 |
+
root = Tk()
|
19 |
+
root.title("souleater-diffusion.ckpt Model")
|
|
|
20 |
|
21 |
+
prompt_entry = Entry(root)
|
22 |
+
prompt_entry.pack()
|
|
|
23 |
|
24 |
+
def generate_callback():
|
25 |
+
prompt = prompt_entry.get()
|
26 |
+
result = generate_picture(prompt)
|
27 |
+
result_label.config(text=result)
|
28 |
|
29 |
+
generate_button = Button(root, text="Generate", command=generate_callback)
|
30 |
+
generate_button.pack()
|
31 |
|
32 |
+
result_label = Label(root, text="")
|
33 |
+
result_label.pack()
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
root.mainloop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|