Spaces:
Running
Running
Create cancer_index_store/inspect.py
Browse files
cancer_index_store/inspect.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
def analyze_vector_store_simple():
|
| 5 |
+
"""Analyze the vector store without numpy dependency"""
|
| 6 |
+
|
| 7 |
+
vector_file = Path("cancer_index_store/default__vector_store.json")
|
| 8 |
+
|
| 9 |
+
if not vector_file.exists():
|
| 10 |
+
print("β Vector store file not found!")
|
| 11 |
+
return
|
| 12 |
+
|
| 13 |
+
# Load the vector store data
|
| 14 |
+
with open(vector_file, 'r', encoding='utf-8') as f:
|
| 15 |
+
vector_data = json.load(f)
|
| 16 |
+
|
| 17 |
+
print("π Vector Store Analysis")
|
| 18 |
+
print("=" * 50)
|
| 19 |
+
|
| 20 |
+
# Check the structure
|
| 21 |
+
if 'embedding_dict' in vector_data:
|
| 22 |
+
embeddings = vector_data['embedding_dict']
|
| 23 |
+
print(f"π Total embeddings: {len(embeddings)}")
|
| 24 |
+
|
| 25 |
+
# Show sample embeddings
|
| 26 |
+
print(f"\nπ Sample Document IDs:")
|
| 27 |
+
doc_ids = list(embeddings.keys())[:5]
|
| 28 |
+
for i, doc_id in enumerate(doc_ids):
|
| 29 |
+
vector = embeddings[doc_id]
|
| 30 |
+
print(f" {i+1}. {doc_id}")
|
| 31 |
+
print(f" Vector dimensions: {len(vector)}")
|
| 32 |
+
print(f" First 5 values: {vector[:5]}")
|
| 33 |
+
|
| 34 |
+
# Basic statistics without numpy
|
| 35 |
+
if embeddings:
|
| 36 |
+
first_vector = list(embeddings.values())[0]
|
| 37 |
+
all_values = [val for vec in embeddings.values() for val in vec]
|
| 38 |
+
|
| 39 |
+
print(f"\nπ Basic Statistics:")
|
| 40 |
+
print(f" Vector dimensions: {len(first_vector)}")
|
| 41 |
+
print(f" Min value: {min(all_values):.6f}")
|
| 42 |
+
print(f" Max value: {max(all_values):.6f}")
|
| 43 |
+
print(f" Avg value: {sum(all_values)/len(all_values):.6f}")
|
| 44 |
+
|
| 45 |
+
if 'text_id_to_ref_doc_id' in vector_data:
|
| 46 |
+
mapping = vector_data['text_id_to_ref_doc_id']
|
| 47 |
+
print(f"\nπ Text to Document Mapping: {len(mapping)} entries")
|
| 48 |
+
print(" Sample mappings:")
|
| 49 |
+
for i, (text_id, doc_id) in enumerate(list(mapping.items())[:3]):
|
| 50 |
+
print(f" {text_id} β {doc_id}")
|
| 51 |
+
|
| 52 |
+
# Show what semantic search does
|
| 53 |
+
print(f"\nπ― How Semantic Search Works:")
|
| 54 |
+
print(f" 1. Your question gets converted to a {len(first_vector) if 'embedding_dict' in vector_data else '384'}-dimensional vector")
|
| 55 |
+
print(f" 2. System finds the most similar vectors in this file")
|
| 56 |
+
print(f" 3. Returns documents with highest similarity scores")
|
| 57 |
+
print(f" 4. Similar medical content = Closer vectors in this space")
|
| 58 |
+
|
| 59 |
+
def show_search_example():
|
| 60 |
+
"""Show a concrete example of how search works"""
|
| 61 |
+
|
| 62 |
+
print(f"\nπ Concrete Search Example:")
|
| 63 |
+
print(f" Query: 'What are breast cancer symptoms?'")
|
| 64 |
+
print(f" β Converted to vector: [0.123, -0.456, 0.789, ...] (384 numbers)")
|
| 65 |
+
print(f" β Compared against 320 document vectors in default__vector_store.json")
|
| 66 |
+
print(f" β Finds vectors for documents about:")
|
| 67 |
+
print(f" β’ 'Common symptoms of breast cancer'")
|
| 68 |
+
print(f" β’ 'Early warning signs and detection'")
|
| 69 |
+
print(f" β’ 'Patient symptom reporting guidelines'")
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
analyze_vector_store_simple()
|
| 73 |
+
show_search_example()
|