Spaces:
Runtime error
Runtime error
DeFactOfficial
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,182 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
)
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from typing import Generator, Tuple, List
|
8 |
+
|
9 |
+
class StepResponse(BaseModel):
|
10 |
+
title: str
|
11 |
+
content: str
|
12 |
+
next_action: str
|
13 |
+
confidence: float
|
14 |
+
|
15 |
+
def get_available_models() -> List[str]:
|
16 |
+
"""Fetch available models from OpenRouter API"""
|
17 |
+
headers = {
|
18 |
+
"Authorization": f"Bearer {os.getenv('OPENROUTER_API_KEY')}",
|
19 |
+
}
|
20 |
+
|
21 |
+
try:
|
22 |
+
response = requests.get("https://openrouter.ai/api/v1/models", headers=headers)
|
23 |
+
response.raise_for_status()
|
24 |
+
models = response.json()
|
25 |
+
return [model["id"] for model in models]
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error fetching models: {e}")
|
28 |
+
# Fallback to a basic list of known models
|
29 |
+
return [
|
30 |
+
"anthropic/claude-3-sonnet-20240320",
|
31 |
+
"anthropic/claude-3-opus-20240229",
|
32 |
+
"google/gemini-pro",
|
33 |
+
"meta-llama/llama-2-70b-chat",
|
34 |
+
"mistral/mistral-medium",
|
35 |
+
]
|
36 |
+
|
37 |
+
def make_api_call(model: str, system_prompt: str, messages: list, max_tokens: int,
|
38 |
+
is_final_answer: bool = False) -> StepResponse:
|
39 |
+
"""Make API call to OpenRouter with specified model"""
|
40 |
+
headers = {
|
41 |
+
"HTTP-Referer": "https://localhost:7860", # Gradio default
|
42 |
+
"X-Title": "Reasoning Chain Demo",
|
43 |
+
"Authorization": f"Bearer {os.getenv('OPENROUTER_API_KEY')}",
|
44 |
+
"Content-Type": "application/json"
|
45 |
+
}
|
46 |
+
|
47 |
+
url = "https://openrouter.ai/api/v1/chat/completions"
|
48 |
+
|
49 |
+
request_body = {
|
50 |
+
"model": model,
|
51 |
+
"messages": [
|
52 |
+
{"role": "system", "content": system_prompt},
|
53 |
+
*messages
|
54 |
+
],
|
55 |
+
"max_tokens": max_tokens,
|
56 |
+
"temperature": 0.2,
|
57 |
+
"response_format": {"type": "json_object"}
|
58 |
+
}
|
59 |
+
|
60 |
+
for attempt in range(3):
|
61 |
+
try:
|
62 |
+
response = requests.post(url, headers=headers, json=request_body)
|
63 |
+
response.raise_for_status()
|
64 |
+
|
65 |
+
result = response.json()
|
66 |
+
message_content = result['choices'][0]['message']['content']
|
67 |
+
|
68 |
+
try:
|
69 |
+
response_data = json.loads(message_content)
|
70 |
+
return StepResponse(**response_data)
|
71 |
+
except json.JSONDecodeError as e:
|
72 |
+
raise ValueError(f"Failed to parse JSON response: {str(e)}")
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
if attempt == 2:
|
76 |
+
return StepResponse(
|
77 |
+
title="Error",
|
78 |
+
content=f"Failed to generate {'final answer' if is_final_answer else 'step'} after 3 attempts. Error: {str(e)}",
|
79 |
+
next_action="final_answer",
|
80 |
+
confidence=0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
+
time.sleep(1)
|
83 |
+
|
84 |
+
def generate_response(prompt: str, model: str, progress=gr.Progress()) -> Generator[str, None, None]:
|
85 |
+
"""Generator function that yields formatted markdown for each step"""
|
86 |
+
system_prompt = """You are an AI assistant that explains your reasoning step by step, incorporating dynamic Chain of Thought (CoT), reflection, and verbal reinforcement learning. IMPORTANT: You must output exactly ONE step of reasoning at a time:
|
87 |
+
|
88 |
+
1. Each response must contain ONE single step of your reasoning process.
|
89 |
+
2. For each step, enclose your thoughts within <thinking> tags as you explore that specific step.
|
90 |
+
3. After completing your current step, indicate whether you need another step or are ready for the final answer.
|
91 |
+
4. Do not try to complete multiple steps or the entire analysis in one response.
|
92 |
+
5. Regularly evaluate your progress, being critical and honest about your reasoning process.
|
93 |
+
6. Assign a quality score between 0.0 and 1.0 to guide your approach:
|
94 |
+
- 0.8+: Continue current approach
|
95 |
+
- 0.5-0.7: Consider minor adjustments
|
96 |
+
- Below 0.5: Seriously consider backtracking and trying a different approach
|
97 |
+
|
98 |
+
IMPORTANT: Your response must be a valid JSON object with the following structure:
|
99 |
+
{
|
100 |
+
"title": "Step title or topic",
|
101 |
+
"content": "Detailed step content",
|
102 |
+
"next_action": "One of: continue, reflect, or final_answer",
|
103 |
+
"confidence": float between 0.0 and 1.0
|
104 |
+
}"""
|
105 |
+
|
106 |
+
messages = [{"role": "user", "content": prompt}]
|
107 |
+
step_count = 1
|
108 |
+
markdown_output = ""
|
109 |
+
|
110 |
+
while True:
|
111 |
+
progress(step_count / 15, f"Step {step_count}") # Show progress
|
112 |
+
step_data = make_api_call(model, system_prompt, messages, 750)
|
113 |
+
|
114 |
+
# Format step as markdown
|
115 |
+
step_md = f"### Step {step_count}: {step_data.title}\n\n"
|
116 |
+
step_md += f"{step_data.content}\n\n"
|
117 |
+
step_md += f"**Confidence:** {step_data.confidence:.2f}\n\n"
|
118 |
+
step_md += "---\n\n"
|
119 |
+
|
120 |
+
markdown_output += step_md
|
121 |
+
yield markdown_output # Update the output incrementally
|
122 |
+
|
123 |
+
messages.append({"role": "assistant", "content": json.dumps(step_data.model_dump())})
|
124 |
+
|
125 |
+
if step_data.next_action == 'final_answer' and step_count < 15:
|
126 |
+
messages.append({"role": "user", "content": "Please continue your analysis with at least 5 more steps before providing the final answer."})
|
127 |
+
elif step_data.next_action == 'final_answer':
|
128 |
+
break
|
129 |
+
elif step_data.next_action == 'reflect' or step_count % 3 == 0:
|
130 |
+
messages.append({"role": "user", "content": "Please perform a detailed self-reflection on your reasoning so far."})
|
131 |
+
else:
|
132 |
+
messages.append({"role": "user", "content": "Please continue with the next step in your analysis."})
|
133 |
+
|
134 |
+
step_count += 1
|
135 |
+
|
136 |
+
# Generate final answer
|
137 |
+
final_data = make_api_call(model, system_prompt, messages, 750, is_final_answer=True)
|
138 |
+
|
139 |
+
final_md = f"### Final Answer\n\n"
|
140 |
+
final_md += f"{final_data.content}\n\n"
|
141 |
+
final_md += f"**Confidence:** {final_data.confidence:.2f}\n\n"
|
142 |
+
|
143 |
+
markdown_output += final_md
|
144 |
+
yield markdown_output
|
145 |
+
|
146 |
+
def create_interface():
|
147 |
+
# Check for API key
|
148 |
+
if not os.getenv('OPENROUTER_API_KEY'):
|
149 |
+
raise ValueError("Please set OPENROUTER_API_KEY environment variable")
|
150 |
+
|
151 |
+
available_models = get_available_models()
|
152 |
+
|
153 |
+
with gr.Blocks() as interface:
|
154 |
+
gr.Markdown("# AI Reasoning Chain with Model Selection")
|
155 |
+
gr.Markdown("This demo shows chain-of-thought reasoning across different language models.")
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Column():
|
159 |
+
model_dropdown = gr.Dropdown(
|
160 |
+
choices=available_models,
|
161 |
+
value=available_models[0],
|
162 |
+
label="Select Model"
|
163 |
)
|
164 |
+
query_input = gr.Textbox(
|
165 |
+
label="Enter your query:",
|
166 |
+
placeholder="e.g., What are the potential long-term effects of climate change on global agriculture?"
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
+
submit_btn = gr.Button("Generate Response")
|
169 |
+
|
170 |
+
output_box = gr.Markdown(label="Response")
|
171 |
+
|
172 |
+
submit_btn.click(
|
173 |
+
fn=generate_response,
|
174 |
+
inputs=[query_input, model_dropdown],
|
175 |
+
outputs=output_box
|
176 |
+
)
|
177 |
+
|
178 |
+
return interface
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
+
interface = create_interface()
|
182 |
+
interface.launch()
|