Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
from threading import Thread
|
11 |
+
import uuid
|
12 |
+
import io
|
13 |
+
import re # Import regular expressions for word highlighting
|
14 |
+
|
15 |
+
# Model and Processor Loading (Done once at startup)
|
16 |
+
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
17 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
18 |
+
MODEL_ID,
|
19 |
+
trust_remote_code=True,
|
20 |
+
torch_dtype=torch.float16
|
21 |
+
).to("cuda").eval()
|
22 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
23 |
+
|
24 |
+
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
25 |
+
|
26 |
+
# Define supported media extensions
|
27 |
+
image_extensions = Image.registered_extensions()
|
28 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
29 |
+
|
30 |
+
|
31 |
+
def identify_and_save_blob(blob_path):
|
32 |
+
"""Identifies if the blob is an image or video and saves it accordingly."""
|
33 |
+
try:
|
34 |
+
with open(blob_path, 'rb') as file:
|
35 |
+
blob_content = file.read()
|
36 |
+
|
37 |
+
# Try to identify if it's an image
|
38 |
+
try:
|
39 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
40 |
+
extension = ".png" # Default to PNG for saving
|
41 |
+
media_type = "image"
|
42 |
+
except (IOError, SyntaxError):
|
43 |
+
# If it's not a valid image, assume it's a video
|
44 |
+
extension = ".mp4" # Default to MP4 for saving
|
45 |
+
media_type = "video"
|
46 |
+
|
47 |
+
# Create a unique filename
|
48 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
49 |
+
with open(filename, "wb") as f:
|
50 |
+
f.write(blob_content)
|
51 |
+
|
52 |
+
return filename, media_type
|
53 |
+
|
54 |
+
except FileNotFoundError:
|
55 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
56 |
+
except Exception as e:
|
57 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
58 |
+
|
59 |
+
|
60 |
+
@spaces.GPU
|
61 |
+
def qwen_inference(media_input, search_word):
|
62 |
+
"""
|
63 |
+
Performs OCR on the input media and highlights the search_word in the extracted text.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
media_input (str): Path to the uploaded image or video file.
|
67 |
+
search_word (str): The word to search and highlight in the OCR result.
|
68 |
+
|
69 |
+
Yields:
|
70 |
+
str: The OCR result with highlighted search words.
|
71 |
+
"""
|
72 |
+
text_input = "Extract text" # Hardcoded text query
|
73 |
+
|
74 |
+
if isinstance(media_input, str): # If it's a filepath
|
75 |
+
media_path = media_input
|
76 |
+
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
|
77 |
+
media_type = "image"
|
78 |
+
elif media_path.endswith(video_extensions):
|
79 |
+
media_type = "video"
|
80 |
+
else:
|
81 |
+
try:
|
82 |
+
media_path, media_type = identify_and_save_blob(media_input)
|
83 |
+
print(media_path, media_type)
|
84 |
+
except Exception as e:
|
85 |
+
print(e)
|
86 |
+
raise ValueError(
|
87 |
+
"Unsupported media type. Please upload an image or video."
|
88 |
+
)
|
89 |
+
|
90 |
+
print(f"Processing media: {media_path} (Type: {media_type})")
|
91 |
+
|
92 |
+
messages = [
|
93 |
+
{
|
94 |
+
"role": "user",
|
95 |
+
"content": [
|
96 |
+
{
|
97 |
+
"type": media_type,
|
98 |
+
media_type: media_path,
|
99 |
+
**({"fps": 8.0} if media_type == "video" else {}),
|
100 |
+
},
|
101 |
+
{"type": "text", "text": text_input},
|
102 |
+
],
|
103 |
+
}
|
104 |
+
]
|
105 |
+
|
106 |
+
# Apply chat template to format the input for the model
|
107 |
+
text = processor.apply_chat_template(
|
108 |
+
messages, tokenize=False, add_generation_prompt=True
|
109 |
+
)
|
110 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
111 |
+
|
112 |
+
# Prepare model inputs
|
113 |
+
inputs = processor(
|
114 |
+
text=[text],
|
115 |
+
images=image_inputs,
|
116 |
+
videos=video_inputs,
|
117 |
+
padding=True,
|
118 |
+
return_tensors="pt",
|
119 |
+
).to("cuda")
|
120 |
+
|
121 |
+
# Initialize the streamer for iterative generation
|
122 |
+
streamer = TextIteratorStreamer(
|
123 |
+
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
124 |
+
)
|
125 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
126 |
+
|
127 |
+
# Start the generation in a separate thread
|
128 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
129 |
+
thread.start()
|
130 |
+
|
131 |
+
buffer = ""
|
132 |
+
for new_text in streamer:
|
133 |
+
buffer += new_text
|
134 |
+
# Highlight the search_word in the buffer
|
135 |
+
if search_word:
|
136 |
+
# Use regex for case-insensitive search and highlight
|
137 |
+
pattern = re.compile(re.escape(search_word), re.IGNORECASE)
|
138 |
+
highlighted_text = pattern.sub(lambda m: f"<mark>{m.group(0)}</mark>", buffer)
|
139 |
+
else:
|
140 |
+
highlighted_text = buffer
|
141 |
+
yield highlighted_text
|
142 |
+
|
143 |
+
|
144 |
+
css = """
|
145 |
+
#output {
|
146 |
+
height: 500px;
|
147 |
+
overflow: auto;
|
148 |
+
border: 1px solid #ccc;
|
149 |
+
}
|
150 |
+
"""
|
151 |
+
|
152 |
+
with gr.Blocks(css=css) as demo:
|
153 |
+
gr.Markdown(DESCRIPTION)
|
154 |
+
|
155 |
+
with gr.Tab(label="Image/Video Input"):
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column():
|
158 |
+
input_media = gr.File(
|
159 |
+
label="Upload Image or Video", type="filepath"
|
160 |
+
)
|
161 |
+
search_word = gr.Textbox(
|
162 |
+
label="Search Word", placeholder="Enter word to highlight", lines=1
|
163 |
+
)
|
164 |
+
submit_btn = gr.Button(value="Submit")
|
165 |
+
with gr.Column():
|
166 |
+
# Use HTML component to display highlighted text
|
167 |
+
output_text = gr.HTML(label="Output Text")
|
168 |
+
|
169 |
+
submit_btn.click(
|
170 |
+
qwen_inference,
|
171 |
+
inputs=[input_media, search_word],
|
172 |
+
outputs=[output_text]
|
173 |
+
)
|
174 |
+
|
175 |
+
demo.launch(debug=True)
|