Spaces:
Running
Running
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import gradio as gr | |
from PIL import Image | |
import re | |
# Load models | |
def initialize_models(): | |
"""Loads and returns the RAG multimodal and Qwen2-VL models along with the processor.""" | |
multimodal_rag = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) | |
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
return multimodal_rag, qwen_model, qwen_processor | |
multimodal_rag, qwen_model, qwen_processor = initialize_models() | |
# Text extraction function | |
def perform_ocr(image): | |
"""Extracts Sanskrit and English text from an image using the Qwen model.""" | |
query = "Extract text from the image in original language" | |
# Format the request for the model | |
user_input = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": query} | |
] | |
} | |
] | |
# Preprocess the input | |
input_text = qwen_processor.apply_chat_template(user_input, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(user_input) | |
model_inputs = qwen_processor( | |
text=[input_text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" | |
).to("cpu") # Use CPU for inference | |
# Generate output | |
with torch.no_grad(): | |
generated_ids = qwen_model.generate(**model_inputs, max_new_tokens=2000) | |
trimmed_ids = [output[len(input_ids):] for input_ids, output in zip(model_inputs.input_ids, generated_ids)] | |
ocr_result = qwen_processor.batch_decode(trimmed_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return ocr_result | |
# Keyword search function | |
def highlight_keyword(text, keyword): | |
"""Searches and highlights the keyword in the extracted text.""" | |
keyword_lowercase = keyword.lower() | |
sentences = text.split('. ') | |
results = [] | |
for sentence in sentences: | |
if keyword_lowercase in sentence.lower(): | |
highlighted = re.sub(f'({re.escape(keyword)})', r'<mark>\1</mark>', sentence, flags=re.IGNORECASE) | |
results.append(highlighted) | |
return results if results else ["No matches found."] | |
# Gradio app for text extraction | |
def extract_text(image): | |
"""Extracts text from an uploaded image.""" | |
return perform_ocr(image) | |
# Gradio app for keyword search | |
def search_in_text(extracted_text, keyword): | |
"""Searches for a keyword in the extracted text and highlights matches.""" | |
results = highlight_keyword(extracted_text, keyword) | |
return "<br>".join(results) | |
# Updated title with revised phrasing | |
header_html = """ | |
<h1 style="text-align: center; color: #4CAF50;"><span class="gradient-text">OCR and Text Search Prototype</span></h1> | |
""" | |
# CSS to fix button sizes | |
custom_css = """ | |
.gr-button { | |
width: 200px; /* Set a fixed width for the buttons */ | |
padding: 12px 20px; /* Add padding to buttons for consistency */ | |
} | |
.gr-textbox { | |
max-height: 300px; /* Set a maximum height for the extracted text output */ | |
overflow-y: scroll; /* Enable scrolling when text exceeds the height */ | |
} | |
""" | |
# Gradio Interface | |
with gr.Blocks(css=custom_css) as interface: | |
# Header section | |
gr.HTML(header_html) | |
# Sidebar section | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=200): | |
gr.Markdown("## Instructions") | |
gr.Markdown(""" | |
1. Upload an image containing text. | |
2. Extract the text from the image. | |
3. Search for specific keywords within the extracted text. | |
""") | |
gr.Markdown("### Features") | |
gr.Markdown(""" | |
- **OCR**: Extract text from images. | |
- **Keyword Search**: Search and highlight keywords in extracted text. | |
""") | |
with gr.Column(scale=3): | |
# Main content in tabs | |
with gr.Tabs(): | |
# First Tab: Text Extraction | |
with gr.Tab("Extract Text"): | |
gr.Markdown("### Upload an image to extract text:") | |
with gr.Row(): | |
image_upload = gr.Image(type="pil", label="Upload Image", interactive=True) | |
with gr.Row(): | |
extract_btn = gr.Button("Extract Text") | |
extracted_textbox = gr.Textbox(label="Extracted Text") | |
extract_btn.click(extract_text, inputs=image_upload, outputs=extracted_textbox) | |
# Second Tab: Keyword Search | |
with gr.Tab("Search in Extracted Text"): | |
gr.Markdown("### Search for a keyword in the extracted text:") | |
with gr.Row(): | |
keyword_searchbox = gr.Textbox(label="Enter Keyword", placeholder="Keyword to search") | |
with gr.Row(): | |
search_btn = gr.Button("Search") | |
search_results = gr.HTML(label="Results") | |
search_btn.click(search_in_text, inputs=[extracted_textbox, keyword_searchbox], outputs=search_results) | |
# Launch the Gradio App | |
interface.launch() |