DeF0017's picture
Update app.py
65f5126 verified
raw
history blame
5.52 kB
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import gradio as gr
from PIL import Image
import re
# Load models
def initialize_models():
"""Loads and returns the RAG multimodal and Qwen2-VL models along with the processor."""
multimodal_rag = RAGMultiModalModel.from_pretrained("vidore/colpali")
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32)
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
return multimodal_rag, qwen_model, qwen_processor
multimodal_rag, qwen_model, qwen_processor = initialize_models()
# Text extraction function
def perform_ocr(image):
"""Extracts Sanskrit and English text from an image using the Qwen model."""
query = "Extract text from the image in original language"
# Format the request for the model
user_input = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": query}
]
}
]
# Preprocess the input
input_text = qwen_processor.apply_chat_template(user_input, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(user_input)
model_inputs = qwen_processor(
text=[input_text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
).to("cpu") # Use CPU for inference
# Generate output
with torch.no_grad():
generated_ids = qwen_model.generate(**model_inputs, max_new_tokens=2000)
trimmed_ids = [output[len(input_ids):] for input_ids, output in zip(model_inputs.input_ids, generated_ids)]
ocr_result = qwen_processor.batch_decode(trimmed_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return ocr_result
# Keyword search function
def highlight_keyword(text, keyword):
"""Searches and highlights the keyword in the extracted text."""
keyword_lowercase = keyword.lower()
sentences = text.split('. ')
results = []
for sentence in sentences:
if keyword_lowercase in sentence.lower():
highlighted = re.sub(f'({re.escape(keyword)})', r'<mark>\1</mark>', sentence, flags=re.IGNORECASE)
results.append(highlighted)
return results if results else ["No matches found."]
# Gradio app for text extraction
def extract_text(image):
"""Extracts text from an uploaded image."""
return perform_ocr(image)
# Gradio app for keyword search
def search_in_text(extracted_text, keyword):
"""Searches for a keyword in the extracted text and highlights matches."""
results = highlight_keyword(extracted_text, keyword)
return "<br>".join(results)
# Updated title with revised phrasing
header_html = """
<h1 style="text-align: center; color: #4CAF50;"><span class="gradient-text">OCR and Text Search Prototype</span></h1>
"""
# CSS to fix button sizes
custom_css = """
.gr-button {
width: 200px; /* Set a fixed width for the buttons */
padding: 12px 20px; /* Add padding to buttons for consistency */
}
.gr-textbox {
max-height: 300px; /* Set a maximum height for the extracted text output */
overflow-y: scroll; /* Enable scrolling when text exceeds the height */
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css) as interface:
# Header section
gr.HTML(header_html)
# Sidebar section
with gr.Row():
with gr.Column(scale=1, min_width=200):
gr.Markdown("## Instructions")
gr.Markdown("""
1. Upload an image containing text.
2. Extract the text from the image.
3. Search for specific keywords within the extracted text.
""")
gr.Markdown("### Features")
gr.Markdown("""
- **OCR**: Extract text from images.
- **Keyword Search**: Search and highlight keywords in extracted text.
""")
with gr.Column(scale=3):
# Main content in tabs
with gr.Tabs():
# First Tab: Text Extraction
with gr.Tab("Extract Text"):
gr.Markdown("### Upload an image to extract text:")
with gr.Row():
image_upload = gr.Image(type="pil", label="Upload Image", interactive=True)
with gr.Row():
extract_btn = gr.Button("Extract Text")
extracted_textbox = gr.Textbox(label="Extracted Text")
extract_btn.click(extract_text, inputs=image_upload, outputs=extracted_textbox)
# Second Tab: Keyword Search
with gr.Tab("Search in Extracted Text"):
gr.Markdown("### Search for a keyword in the extracted text:")
with gr.Row():
keyword_searchbox = gr.Textbox(label="Enter Keyword", placeholder="Keyword to search")
with gr.Row():
search_btn = gr.Button("Search")
search_results = gr.HTML(label="Results")
search_btn.click(search_in_text, inputs=[extracted_textbox, keyword_searchbox], outputs=search_results)
# Launch the Gradio App
interface.launch()