Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +102 -0
- best_model_CNN_bs32_lr0.0005_epoch9_acc0.9238.pth +3 -0
- requirements.txt +12 -0
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import librosa
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import openai
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Emotion categories
|
| 11 |
+
emotions = ["Neutral", "Happy", "Angry", "Sad", "Surprise"]
|
| 12 |
+
|
| 13 |
+
# CNN model definition
|
| 14 |
+
class CNN(nn.Module):
|
| 15 |
+
def __init__(self, num_classes):
|
| 16 |
+
super(CNN, self).__init__()
|
| 17 |
+
self.name = "CNN"
|
| 18 |
+
self.conv1 = nn.Conv1d(in_channels=768, out_channels=256, kernel_size=3, padding=1)
|
| 19 |
+
self.bn1 = nn.BatchNorm1d(256)
|
| 20 |
+
self.pool = nn.AdaptiveMaxPool1d(output_size=96)
|
| 21 |
+
self.conv2 = nn.Conv1d(in_channels=256, out_channels=128, kernel_size=3, padding=1)
|
| 22 |
+
self.bn2 = nn.BatchNorm1d(128)
|
| 23 |
+
self.conv3 = nn.Conv1d(in_channels=128, out_channels=64, kernel_size=3, padding=1)
|
| 24 |
+
self.bn3 = nn.BatchNorm1d(64)
|
| 25 |
+
self.fc1 = nn.Linear(64 * 96, 128)
|
| 26 |
+
self.dropout = nn.Dropout(0.5)
|
| 27 |
+
self.fc2 = nn.Linear(128, num_classes)
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = x.unsqueeze(1)
|
| 31 |
+
x = x.permute(0, 2, 1)
|
| 32 |
+
x = F.relu(self.bn1(self.conv1(x)))
|
| 33 |
+
x = self.pool(x)
|
| 34 |
+
x = F.relu(self.bn2(self.conv2(x)))
|
| 35 |
+
x = self.pool(x)
|
| 36 |
+
x = F.relu(self.bn3(self.conv3(x)))
|
| 37 |
+
x = self.pool(x)
|
| 38 |
+
x = x.view(x.size(0), -1)
|
| 39 |
+
x = F.relu(self.fc1(x))
|
| 40 |
+
x = self.dropout(x)
|
| 41 |
+
x = self.fc2(x)
|
| 42 |
+
return x
|
| 43 |
+
|
| 44 |
+
# Load the trained model
|
| 45 |
+
model = CNN(num_classes=5)
|
| 46 |
+
model.load_state_dict(torch.load("best_model.pth", map_location="cpu"))
|
| 47 |
+
model.eval()
|
| 48 |
+
|
| 49 |
+
# Extract features from audio file
|
| 50 |
+
def extract_feature(audio_path):
|
| 51 |
+
y, sr = librosa.load(audio_path, sr=16000)
|
| 52 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
|
| 53 |
+
max_len = 200
|
| 54 |
+
if mfcc.shape[1] > max_len:
|
| 55 |
+
mfcc = mfcc[:, :max_len]
|
| 56 |
+
else:
|
| 57 |
+
pad_width = max_len - mfcc.shape[1]
|
| 58 |
+
mfcc = np.pad(mfcc, ((0, 0), (0, pad_width)), mode='constant')
|
| 59 |
+
feature = np.tile(mfcc, (int(768 / 40), 1))
|
| 60 |
+
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0)
|
| 61 |
+
return feature
|
| 62 |
+
|
| 63 |
+
# Full pipeline: emotion detection + GPT response
|
| 64 |
+
def predict_and_reply(audio_path):
|
| 65 |
+
feature = extract_feature(audio_path)
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
output = model(feature)
|
| 68 |
+
pred = torch.argmax(output, dim=1).item()
|
| 69 |
+
emotion = emotions[pred]
|
| 70 |
+
|
| 71 |
+
prompt = f"The user sounds {emotion.lower()}. What would you like to say to them?"
|
| 72 |
+
|
| 73 |
+
try:
|
| 74 |
+
openai.api_key = os.getenv("OPENAI_API_KEY", "your-openai-api-key") # Replace with real key or env var
|
| 75 |
+
response = openai.ChatCompletion.create(
|
| 76 |
+
model="gpt-3.5-turbo",
|
| 77 |
+
messages=[
|
| 78 |
+
{"role": "system", "content": "You are an empathetic AI assistant."},
|
| 79 |
+
{"role": "user", "content": prompt}
|
| 80 |
+
]
|
| 81 |
+
)
|
| 82 |
+
reply = response['choices'][0]['message']['content']
|
| 83 |
+
except Exception as e:
|
| 84 |
+
reply = f"❌ GPT Error: {str(e)}"
|
| 85 |
+
|
| 86 |
+
return f"🎧 Detected Emotion: **{emotion}**\n\n💬 GPT Says:\n{reply}"
|
| 87 |
+
|
| 88 |
+
#️ Gradio app layout
|
| 89 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 90 |
+
gr.Markdown("## 🎙️ 情绪检测 + 聊天机器人")
|
| 91 |
+
gr.Markdown("上传或录制一段简短的语音片段,我会识别你的情绪,并请求 GPT 做出共情的回应。")
|
| 92 |
+
|
| 93 |
+
with gr.Row():
|
| 94 |
+
with gr.Column():
|
| 95 |
+
audio_input = gr.Audio(label="🎧 语音输入", type="filepath", format="wav")
|
| 96 |
+
submit_btn = gr.Button("🚀 提交")
|
| 97 |
+
with gr.Column():
|
| 98 |
+
output_text = gr.Markdown(label="💬 GPT 回复")
|
| 99 |
+
|
| 100 |
+
submit_btn.click(fn=predict_and_reply, inputs=audio_input, outputs=output_text)
|
| 101 |
+
|
| 102 |
+
demo.launch()
|
best_model_CNN_bs32_lr0.0005_epoch9_acc0.9238.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1ff55da3574c0126d1ed0970a0e0584d4a3f0aa9e668562e95043b33bdbf946
|
| 3 |
+
size 6017753
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchaudio
|
| 3 |
+
torchvision
|
| 4 |
+
transformers
|
| 5 |
+
librosa
|
| 6 |
+
matplotlib
|
| 7 |
+
numpy
|
| 8 |
+
openai
|
| 9 |
+
pandas
|
| 10 |
+
tqdm
|
| 11 |
+
scikit-learn
|
| 12 |
+
gradio
|