Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import json | |
import random | |
import numpy as np | |
from typing import Dict, List, Tuple, Any, Optional | |
from scene_type import SCENE_TYPES | |
from scene_detail_templates import SCENE_DETAIL_TEMPLATES | |
from object_template_fillers import OBJECT_TEMPLATE_FILLERS | |
from lighting_conditions import LIGHTING_CONDITIONS | |
from viewpoint_templates import VIEWPOINT_TEMPLATES | |
from cultural_templates import CULTURAL_TEMPLATES | |
from confifence_templates import CONFIDENCE_TEMPLATES | |
class EnhancedSceneDescriber: | |
""" | |
Enhanced scene description generator with improved template handling, | |
viewpoint awareness, and cultural context recognition. | |
Provides detailed natural language descriptions of scenes based on | |
detection results and scene classification. | |
""" | |
def __init__(self, templates_db: Optional[Dict] = None, scene_types: Optional[Dict] = None): | |
""" | |
Initialize the enhanced scene describer. | |
Args: | |
templates_db: Optional custom templates database | |
scene_types: Dictionary of scene type definitions | |
""" | |
# Load or use provided scene types | |
self.scene_types = scene_types or self._load_default_scene_types() | |
# Load templates database | |
self.templates = templates_db or self._load_templates() | |
# Initialize viewpoint detection parameters | |
self._initialize_viewpoint_parameters() | |
def _load_default_scene_types(self) -> Dict: | |
""" | |
Load default scene types. | |
Returns: | |
Dict: Scene type definitions | |
""" | |
return SCENE_TYPES | |
def _load_templates(self) -> Dict: | |
""" | |
Load description templates from imported Python modules. | |
Returns: | |
Dict: Template collections for different description components | |
""" | |
templates = {} | |
# 直接從導入的 Python 模組中獲取模板 | |
templates["scene_detail_templates"] = SCENE_DETAIL_TEMPLATES | |
templates["object_template_fillers"] = OBJECT_TEMPLATE_FILLERS | |
templates["viewpoint_templates"] = VIEWPOINT_TEMPLATES | |
templates["cultural_templates"] = CULTURAL_TEMPLATES | |
# 從 LIGHTING_CONDITIONS 獲取照明模板 | |
templates["lighting_templates"] = { | |
key: data["general"] for key, data in LIGHTING_CONDITIONS.get("time_descriptions", {}).items() | |
} | |
# 設置默認的置信度模板 | |
templates["confidence_templates"] = { | |
"high": "{description} {details}", | |
"medium": "This appears to be {description} {details}", | |
"low": "This might be {description}, but the confidence is low. {details}" | |
} | |
# 初始化其他必要的模板(現在這個函數簡化了很多) | |
self._initialize_default_templates(templates) | |
return templates | |
def _initialize_default_templates(self, templates: Dict): | |
""" | |
檢查模板字典並填充任何缺失的默認模板。 | |
在將模板移至專門的模組後,此方法主要作為安全機制, | |
確保即使導入失敗或某些模板未在外部定義,系統仍能正常運行。 | |
Args: | |
templates: 要檢查和更新的模板字典 | |
""" | |
# 檢查關鍵模板類型是否存在,如果不存在則添加默認值 | |
# 置信度模板 - 用於控制描述的語氣 | |
if "confidence_templates" not in templates: | |
templates["confidence_templates"] = { | |
"high": "{description} {details}", | |
"medium": "This appears to be {description} {details}", | |
"low": "This might be {description}, but the confidence is low. {details}" | |
} | |
# 場景細節模板 - 如果未從外部導入 | |
if "scene_detail_templates" not in templates: | |
templates["scene_detail_templates"] = { | |
"default": ["A space with various objects."] | |
} | |
# 物體填充模板 - 用於生成物體描述 | |
if "object_template_fillers" not in templates: | |
templates["object_template_fillers"] = { | |
"default": ["various items"] | |
} | |
# 視角模板 - 雖然我們現在從專門模組導入,但作為備份 | |
if "viewpoint_templates" not in templates: | |
# 使用簡化版的默認視角模板 | |
templates["viewpoint_templates"] = { | |
"eye_level": { | |
"prefix": "From eye level, ", | |
"observation": "the scene is viewed straight on." | |
}, | |
"aerial": { | |
"prefix": "From above, ", | |
"observation": "the scene is viewed from a bird's-eye perspective." | |
} | |
} | |
# 文化模板 | |
if "cultural_templates" not in templates: | |
templates["cultural_templates"] = { | |
"asian": { | |
"elements": ["cultural elements"], | |
"description": "The scene has Asian characteristics." | |
}, | |
"european": { | |
"elements": ["architectural features"], | |
"description": "The scene has European characteristics." | |
} | |
} | |
# 照明模板 - 用於描述光照條件 | |
if "lighting_templates" not in templates: | |
templates["lighting_templates"] = { | |
"day_clear": "The scene is captured during daylight.", | |
"night": "The scene is captured at night.", | |
"unknown": "The lighting conditions are not easily determined." | |
} | |
def _initialize_viewpoint_parameters(self): | |
""" | |
Initialize parameters used for viewpoint detection. | |
""" | |
self.viewpoint_params = { | |
# Parameters for detecting aerial views | |
"aerial_threshold": 0.7, # High object density viewed from top | |
"aerial_size_variance_threshold": 0.15, # Low size variance in aerial views | |
# Parameters for detecting low angle views | |
"low_angle_threshold": 0.3, # Bottom-heavy object distribution | |
"vertical_size_ratio_threshold": 1.8, # Vertical objects appear taller | |
# Parameters for detecting elevated views | |
"elevated_threshold": 0.6, # Objects mostly in middle/bottom | |
"elevated_top_threshold": 0.3 # Few objects at top of frame | |
} | |
def generate_description(self, | |
scene_type: str, | |
detected_objects: List[Dict], | |
confidence: float, | |
lighting_info: Optional[Dict] = None, | |
functional_zones: Optional[Dict] = None) -> str: | |
""" | |
Generate enhanced scene description based on detection results, scene type, | |
and additional contextual information. | |
This is the main entry point that replaces the original _generate_scene_description. | |
Args: | |
scene_type: Identified scene type | |
detected_objects: List of detected objects | |
confidence: Scene classification confidence | |
lighting_info: Optional lighting condition information | |
functional_zones: Optional identified functional zones | |
Returns: | |
str: Natural language description of the scene | |
""" | |
# Handle unknown scene type or very low confidence | |
if scene_type == "unknown" or confidence < 0.4: | |
return self._format_final_description(self._generate_generic_description(detected_objects, lighting_info)) | |
# Detect viewpoint | |
viewpoint = self._detect_viewpoint(detected_objects) | |
# Process aerial viewpoint scene types | |
if viewpoint == "aerial": | |
if "intersection" in scene_type or self._is_intersection(detected_objects): | |
scene_type = "aerial_view_intersection" | |
elif any(keyword in scene_type for keyword in ["commercial", "shopping", "retail"]): | |
scene_type = "aerial_view_commercial_area" | |
elif any(keyword in scene_type for keyword in ["plaza", "square"]): | |
scene_type = "aerial_view_plaza" | |
else: | |
scene_type = "aerial_view_intersection" | |
# Detect cultural context - only for non-aerial viewpoints | |
cultural_context = None | |
if viewpoint != "aerial": | |
cultural_context = self._detect_cultural_context(scene_type, detected_objects) | |
# Select appropriate template based on confidence | |
if confidence > 0.75: | |
confidence_level = "high" | |
elif confidence > 0.5: | |
confidence_level = "medium" | |
else: | |
confidence_level = "low" | |
# Get base description for the scene type | |
if viewpoint == "aerial": | |
if 'base_description' not in locals(): | |
base_description = "An aerial view showing the layout and movement patterns from above" | |
elif scene_type in self.scene_types: | |
base_description = self.scene_types[scene_type].get("description", "A scene") | |
else: | |
base_description = "A scene" | |
# Generate detailed scene information | |
scene_details = self._generate_scene_details( | |
scene_type, | |
detected_objects, | |
lighting_info, | |
viewpoint | |
) | |
# Start with the base description | |
description = base_description | |
# If there's a secondary description from the scene type template, append it properly | |
if scene_type in self.scene_types and "secondary_description" in self.scene_types[scene_type]: | |
secondary_desc = self.scene_types[scene_type]["secondary_description"] | |
if secondary_desc: | |
description = self._smart_append(description, secondary_desc) | |
# Improve description based on people count | |
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0] # Person class | |
if people_objs: | |
people_count = len(people_objs) | |
if people_count > 5: | |
people_phrase = f"numerous people ({people_count})" | |
else: | |
people_phrase = f"{people_count} {'people' if people_count > 1 else 'person'}" | |
# Add people information to the scene details if not already mentioned | |
if "people" not in description.lower() and "pedestrian" not in description.lower(): | |
description = self._smart_append(description, f"The scene includes {people_phrase}") | |
# Apply cultural context if detected (only for non-aerial viewpoints) | |
if cultural_context and viewpoint != "aerial": | |
cultural_elements = self._generate_cultural_elements(cultural_context) | |
if cultural_elements: | |
description = self._smart_append(description, cultural_elements) | |
# Now append the detailed scene information if available | |
if scene_details: | |
# Use smart_append to ensure proper formatting between base description and details | |
description = self._smart_append(description, scene_details) | |
# Include lighting information if available | |
lighting_description = "" | |
if lighting_info and "time_of_day" in lighting_info: | |
lighting_type = lighting_info["time_of_day"] | |
if lighting_type in self.templates.get("lighting_templates", {}): | |
lighting_description = self.templates["lighting_templates"][lighting_type] | |
# Add lighting description if available | |
if lighting_description and lighting_description not in description: | |
description = self._smart_append(description, lighting_description) | |
# Process viewpoint information | |
if viewpoint != "eye_level" and viewpoint in self.templates.get("viewpoint_templates", {}): | |
viewpoint_template = self.templates["viewpoint_templates"][viewpoint] | |
# Special handling for viewpoint prefix | |
prefix = viewpoint_template.get('prefix', '') | |
if prefix and not description.startswith(prefix): | |
# Prefix is a phrase like "From above, " that should precede the description | |
if description and description[0].isupper(): | |
# Maintain the flow by lowercasing the first letter after the prefix | |
description = prefix + description[0].lower() + description[1:] | |
else: | |
description = prefix + description | |
# Get appropriate scene elements description based on viewpoint | |
if viewpoint == "aerial": | |
scene_elements = "the crossing patterns and pedestrian movement" | |
else: | |
scene_elements = "objects and layout" | |
viewpoint_desc = viewpoint_template.get("observation", "").format( | |
scene_elements=scene_elements | |
) | |
# Add viewpoint observation if not already included | |
if viewpoint_desc and viewpoint_desc not in description: | |
description = self._smart_append(description, viewpoint_desc) | |
# Add information about functional zones if available | |
if functional_zones and len(functional_zones) > 0: | |
zones_desc = self._describe_functional_zones(functional_zones) | |
if zones_desc: | |
description = self._smart_append(description, zones_desc) | |
# Calculate actual people count | |
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) | |
# Check for inconsistencies in people count descriptions | |
if people_count > 5: | |
# Identify fragments that might contain smaller people counts | |
small_people_patterns = [ | |
r"Area with \d+ people\.", | |
r"Area with \d+ person\.", | |
r"with \d+ people", | |
r"with \d+ person" | |
] | |
# Check and remove each pattern | |
filtered_description = description | |
for pattern in small_people_patterns: | |
matches = re.findall(pattern, filtered_description) | |
for match in matches: | |
# Extract the number from the match | |
number_match = re.search(r'\d+', match) | |
if number_match: | |
try: | |
people_mentioned = int(number_match.group()) | |
# If the mentioned count is less than total, remove the entire sentence | |
if people_mentioned < people_count: | |
# Split description into sentences | |
sentences = re.split(r'(?<=[.!?])\s+', filtered_description) | |
# Remove sentences containing the match | |
filtered_sentences = [] | |
for sentence in sentences: | |
if match not in sentence: | |
filtered_sentences.append(sentence) | |
# Recombine the description | |
filtered_description = " ".join(filtered_sentences) | |
except ValueError: | |
# Failed number conversion, continue processing | |
continue | |
# Use the filtered description | |
description = filtered_description | |
# Final formatting to ensure correct punctuation and capitalization | |
description = self._format_final_description(description) | |
return description | |
def _smart_append(self, current_text: str, new_fragment: str) -> str: | |
""" | |
Intelligently append a new text fragment to the current text, | |
handling punctuation and capitalization correctly. | |
Args: | |
current_text: The existing text to append to | |
new_fragment: The new text fragment to append | |
Returns: | |
str: The combined text with proper formatting | |
""" | |
# Handle empty cases | |
if not new_fragment: | |
return current_text | |
if not current_text: | |
# Ensure first character is uppercase for the first fragment | |
return new_fragment[0].upper() + new_fragment[1:] if new_fragment else "" | |
# Clean up existing text | |
current_text = current_text.rstrip() | |
# Check for ending punctuation | |
ends_with_sentence = current_text.endswith(('.', '!', '?')) | |
ends_with_comma = current_text.endswith(',') | |
# Specifically handle the "A xxx A yyy" pattern that's causing issues | |
if (current_text.startswith("A ") or current_text.startswith("An ")) and \ | |
(new_fragment.startswith("A ") or new_fragment.startswith("An ")): | |
return current_text + ". " + new_fragment | |
# Decide how to join the texts | |
if ends_with_sentence: | |
# After a sentence, start with uppercase and add proper spacing | |
joined_text = current_text + " " + (new_fragment[0].upper() + new_fragment[1:]) | |
elif ends_with_comma: | |
# After a comma, maintain flow with lowercase unless it's a proper noun or special case | |
if new_fragment.startswith(('I ', 'I\'', 'A ', 'An ', 'The ')) or new_fragment[0].isupper(): | |
joined_text = current_text + " " + new_fragment | |
else: | |
joined_text = current_text + " " + new_fragment[0].lower() + new_fragment[1:] | |
elif "scene is" in new_fragment.lower() or "scene includes" in new_fragment.lower(): | |
# When adding a new sentence about the scene, use a period | |
joined_text = current_text + ". " + new_fragment | |
else: | |
# For other cases, decide based on the content | |
if self._is_related_phrases(current_text, new_fragment): | |
if new_fragment.startswith(('I ', 'I\'', 'A ', 'An ', 'The ')) or new_fragment[0].isupper(): | |
joined_text = current_text + ", " + new_fragment | |
else: | |
joined_text = current_text + ", " + new_fragment[0].lower() + new_fragment[1:] | |
else: | |
# Use period for unrelated phrases | |
joined_text = current_text + ". " + (new_fragment[0].upper() + new_fragment[1:]) | |
return joined_text | |
def _is_related_phrases(self, text1: str, text2: str) -> bool: | |
""" | |
Determine if two phrases are related and should be connected with a comma | |
rather than separated with a period. | |
Args: | |
text1: The first text fragment | |
text2: The second text fragment to be appended | |
Returns: | |
bool: Whether the phrases appear to be related | |
""" | |
# Check if either phrase starts with "A" or "An" - these are likely separate descriptions | |
if (text1.startswith("A ") or text1.startswith("An ")) and \ | |
(text2.startswith("A ") or text2.startswith("An ")): | |
return False # These are separate descriptions, not related phrases | |
# Check if the second phrase starts with a connecting word | |
connecting_words = ["which", "where", "who", "whom", "whose", "with", "without", | |
"this", "these", "that", "those", "and", "or", "but"] | |
first_word = text2.split()[0].lower() if text2 else "" | |
if first_word in connecting_words: | |
return True | |
# Check if the first phrase ends with something that suggests continuity | |
ending_patterns = ["such as", "including", "like", "especially", "particularly", | |
"for example", "for instance", "namely", "specifically"] | |
for pattern in ending_patterns: | |
if text1.lower().endswith(pattern): | |
return True | |
# Check if both phrases are about the scene | |
if "scene" in text1.lower() and "scene" in text2.lower(): | |
return False # Separate statements about the scene should be separate sentences | |
return False | |
def _format_final_description(self, text: str) -> str: | |
""" | |
Format the final description text to ensure correct punctuation, | |
capitalization, and spacing. | |
Args: | |
text: The text to format | |
Returns: | |
str: The properly formatted text | |
""" | |
import re | |
if not text: | |
return "" | |
# 1. 特別處理連續以"A"開頭的片段 (這是一個常見問題) | |
text = re.sub(r'(A\s[^.!?]+?)\s+(A\s)', r'\1. \2', text, flags=re.IGNORECASE) | |
text = re.sub(r'(An\s[^.!?]+?)\s+(An?\s)', r'\1. \2', text, flags=re.IGNORECASE) | |
# 2. 確保第一個字母大寫 | |
text = text[0].upper() + text[1:] if text else "" | |
# 3. 修正詞之間的空格問題 | |
text = re.sub(r'\s{2,}', ' ', text) # 多個空格改為一個 | |
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text) # 小寫後大寫間加空格 | |
# 4. 修正詞連接問題 | |
text = re.sub(r'([a-zA-Z])and', r'\1 and', text) # "xxx"和"and"間加空格 | |
text = re.sub(r'([a-zA-Z])with', r'\1 with', text) # "xxx"和"with"間加空格 | |
text = re.sub(r'plants(and|with|or)', r'plants \1', text) # 修正"plantsand"這類問題 | |
# 5. 修正標點符號後的大小寫問題 | |
text = re.sub(r'\.(\s+)([a-z])', lambda m: f'.{m.group(1)}{m.group(2).upper()}', text) # 句號後大寫 | |
# 6. 修正逗號後接大寫單詞的問題 | |
def fix_capitalization_after_comma(match): | |
word = match.group(2) | |
# 例外情況:保留專有名詞、人稱代詞等的大寫 | |
if word in ["I", "I'm", "I've", "I'd", "I'll"]: | |
return match.group(0) # 保持原樣 | |
# 保留月份、星期、地名等專有名詞的大寫 | |
proper_nouns = ["January", "February", "March", "April", "May", "June", "July", | |
"August", "September", "October", "November", "December", | |
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] | |
if word in proper_nouns: | |
return match.group(0) # 保持原樣 | |
# 其他情況:將首字母改為小寫 | |
return match.group(1) + word[0].lower() + word[1:] | |
# 匹配逗號後接空格再接大寫單詞的模式 | |
text = re.sub(r'(,\s+)([A-Z][a-zA-Z]*)', fix_capitalization_after_comma, text) | |
common_phrases = [ | |
(r'Social or seating area', r'social or seating area'), | |
(r'Sleeping area', r'sleeping area'), | |
(r'Dining area', r'dining area'), | |
(r'Living space', r'living space') | |
] | |
for phrase, replacement in common_phrases: | |
# 只修改句中的術語,保留句首的大寫 | |
text = re.sub(r'(?<=[.!?]\s)' + phrase, replacement, text) | |
# 修改句中的術語,但保留句首的大寫 | |
text = re.sub(r'(?<=,\s)' + phrase, replacement, text) | |
# 7. 確保標點符號後有空格 | |
text = re.sub(r'\s+([.,;:!?])', r'\1', text) # 標點符號前不要空格 | |
text = re.sub(r'([.,;:!?])([a-zA-Z0-9])', r'\1 \2', text) # 標點符號後要有空格 | |
# 8. 修正重複標點符號 | |
text = re.sub(r'\.{2,}', '.', text) # 多個句號變一個 | |
text = re.sub(r',{2,}', ',', text) # 多個逗號變一個 | |
# 9. 確保文本以標點結束 | |
if text and not text[-1] in '.!?': | |
text += '.' | |
return text | |
def _is_intersection(self, detected_objects: List[Dict]) -> bool: | |
""" | |
通過分析物體分佈來判斷場景是否為十字路口 | |
""" | |
# 檢查行人分佈模式 | |
pedestrians = [obj for obj in detected_objects if obj["class_id"] == 0] | |
if len(pedestrians) >= 8: # 需要足夠的行人來形成十字路口 | |
# 抓取行人位置 | |
positions = [obj.get("normalized_center", (0, 0)) for obj in pedestrians] | |
# 分析 x 和 y 坐標分佈 | |
x_coords = [pos[0] for pos in positions] | |
y_coords = [pos[1] for pos in positions] | |
# 計算 x 和 y 坐標的變異數 | |
x_variance = np.var(x_coords) if len(x_coords) > 1 else 0 | |
y_variance = np.var(y_coords) if len(y_coords) > 1 else 0 | |
# 計算範圍 | |
x_range = max(x_coords) - min(x_coords) | |
y_range = max(y_coords) - min(y_coords) | |
# 如果 x 和 y 方向都有較大範圍且範圍相似,那就有可能是十字路口 | |
if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3: | |
return True | |
return False | |
def _generate_generic_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None) -> str: | |
""" | |
Generate a generic description when scene type is unknown or confidence is very low. | |
Args: | |
detected_objects: List of detected objects | |
lighting_info: Optional lighting condition information | |
Returns: | |
str: Generic description based on detected objects | |
""" | |
# Count object occurrences | |
obj_counts = {} | |
for obj in detected_objects: | |
class_name = obj["class_name"] | |
if class_name not in obj_counts: | |
obj_counts[class_name] = 0 | |
obj_counts[class_name] += 1 | |
# Get top objects by count | |
top_objects = sorted(obj_counts.items(), key=lambda x: x[1], reverse=True)[:5] | |
if not top_objects: | |
base_desc = "No clearly identifiable objects are visible in this scene." | |
else: | |
# Format object list | |
objects_text = [] | |
for name, count in top_objects: | |
if count > 1: | |
objects_text.append(f"{count} {name}s") | |
else: | |
objects_text.append(name) | |
if len(objects_text) == 1: | |
objects_list = objects_text[0] | |
elif len(objects_text) == 2: | |
objects_list = f"{objects_text[0]} and {objects_text[1]}" | |
else: | |
objects_list = ", ".join(objects_text[:-1]) + f", and {objects_text[-1]}" | |
base_desc = f"This scene contains {objects_list}." | |
# Add lighting information if available | |
if lighting_info and "time_of_day" in lighting_info: | |
lighting_type = lighting_info["time_of_day"] | |
if lighting_type in self.templates.get("lighting_templates", {}): | |
lighting_desc = self.templates["lighting_templates"][lighting_type] | |
base_desc += f" {lighting_desc}" | |
return base_desc | |
def _generate_scene_details(self, | |
scene_type: str, | |
detected_objects: List[Dict], | |
lighting_info: Optional[Dict] = None, | |
viewpoint: str = "eye_level") -> str: | |
""" | |
Generate detailed description based on scene type and detected objects. | |
Args: | |
scene_type: Identified scene type | |
detected_objects: List of detected objects | |
lighting_info: Optional lighting condition information | |
viewpoint: Detected viewpoint (aerial, eye_level, etc.) | |
Returns: | |
str: Detailed scene description | |
""" | |
# Get scene-specific templates | |
scene_details = "" | |
scene_templates = self.templates.get("scene_detail_templates", {}) | |
# Handle specific scene types | |
if scene_type in scene_templates: | |
# Select a template appropriate for the viewpoint if available | |
viewpoint_key = f"{scene_type}_{viewpoint}" | |
if viewpoint_key in scene_templates: | |
# We have a viewpoint-specific template | |
templates_list = scene_templates[viewpoint_key] | |
else: | |
# Fall back to general templates for this scene type | |
templates_list = scene_templates[scene_type] | |
# Select a random template from the list | |
if templates_list: | |
detail_template = random.choice(templates_list) | |
# Fill the template with object information | |
scene_details = self._fill_detail_template( | |
detail_template, | |
detected_objects, | |
scene_type | |
) | |
else: | |
# Use default templates if specific ones aren't available | |
if "default" in scene_templates: | |
detail_template = random.choice(scene_templates["default"]) | |
scene_details = self._fill_detail_template( | |
detail_template, | |
detected_objects, | |
"default" | |
) | |
else: | |
# Fall back to basic description if no templates are available | |
scene_details = self._generate_basic_details(scene_type, detected_objects) | |
return scene_details | |
def _fill_detail_template(self, template: str, detected_objects: List[Dict], scene_type: str) -> str: | |
""" | |
Fill a template with specific details based on detected objects. | |
Args: | |
template: Template string with placeholders | |
detected_objects: List of detected objects | |
scene_type: Identified scene type | |
Returns: | |
str: Filled template | |
""" | |
# Find placeholders in the template using simple {placeholder} syntax | |
import re | |
placeholders = re.findall(r'\{([^}]+)\}', template) | |
filled_template = template | |
# Get object template fillers | |
fillers = self.templates.get("object_template_fillers", {}) | |
# 為所有可能的變數設置默認值 | |
default_replacements = { | |
# 室內相關 | |
"furniture": "various furniture pieces", | |
"seating": "comfortable seating", | |
"electronics": "entertainment devices", | |
"bed_type": "a bed", | |
"bed_location": "room", | |
"bed_description": "sleeping arrangements", | |
"extras": "personal items", | |
"table_setup": "a dining table and chairs", | |
"table_description": "a dining surface", | |
"dining_items": "dining furniture and tableware", | |
"appliances": "kitchen appliances", | |
"kitchen_items": "cooking utensils and dishware", | |
"cooking_equipment": "cooking equipment", | |
"office_equipment": "work-related furniture and devices", | |
"desk_setup": "a desk and chair", | |
"computer_equipment": "electronic devices", | |
# 室外/城市相關 | |
"traffic_description": "vehicles and pedestrians", | |
"people_and_vehicles": "people and various vehicles", | |
"street_elements": "urban infrastructure", | |
"park_features": "benches and greenery", | |
"outdoor_elements": "natural features", | |
"park_description": "outdoor amenities", | |
"store_elements": "merchandise displays", | |
"shopping_activity": "customers browse and shop", | |
"store_items": "products for sale", | |
# 高級餐廳相關 | |
"design_elements": "elegant decor", | |
"lighting": "stylish lighting fixtures", | |
# 亞洲商業街相關 | |
"storefront_features": "compact shops", | |
"pedestrian_flow": "people walking", | |
"asian_elements": "distinctive cultural elements", | |
"cultural_elements": "traditional design features", | |
"signage": "colorful signs", | |
"street_activities": "busy urban activity", | |
# 金融區相關 | |
"buildings": "tall buildings", | |
"traffic_elements": "vehicles", | |
"skyscrapers": "high-rise buildings", | |
"road_features": "wide streets", | |
"architectural_elements": "modern architecture", | |
"city_landmarks": "prominent structures", | |
# 十字路口相關 | |
"crossing_pattern": "marked pedestrian crossings", | |
"pedestrian_behavior": "careful walking", | |
"pedestrian_density": "groups of pedestrians", | |
"traffic_pattern": "regulated traffic flow", | |
# 交通樞紐相關 | |
"transit_vehicles": "public transportation vehicles", | |
"passenger_activity": "commuter movement", | |
"transportation_modes": "various transit options", | |
"passenger_needs": "waiting areas", | |
"transit_infrastructure": "transit facilities", | |
"passenger_movement": "commuter flow", | |
# 購物區相關 | |
"retail_elements": "shops and displays", | |
"store_types": "various retail establishments", | |
"walkway_features": "pedestrian pathways", | |
"commercial_signage": "store signs", | |
"consumer_behavior": "shopping activities", | |
# 空中視角相關 | |
"commercial_layout": "organized retail areas", | |
"pedestrian_pattern": "people movement patterns", | |
"gathering_features": "public gathering spaces", | |
"movement_pattern": "crowd flow patterns", | |
"urban_elements": "city infrastructure", | |
"public_activity": "social interaction", | |
# 文化特定元素 | |
"stall_elements": "vendor booths", | |
"lighting_features": "decorative lights", | |
"food_elements": "food offerings", | |
"vendor_stalls": "market stalls", | |
"nighttime_activity": "evening commerce", | |
"cultural_lighting": "traditional lighting", | |
"night_market_sounds": "lively market sounds", | |
"evening_crowd_behavior": "nighttime social activity", | |
"architectural_elements": "cultural buildings", | |
"religious_structures": "sacred buildings", | |
"decorative_features": "ornamental designs", | |
"cultural_practices": "traditional activities", | |
"temple_architecture": "religious structures", | |
"sensory_elements": "atmospheric elements", | |
"visitor_activities": "cultural experiences", | |
"ritual_activities": "ceremonial practices", | |
"cultural_symbols": "meaningful symbols", | |
"architectural_style": "historical buildings", | |
"historic_elements": "traditional architecture", | |
"urban_design": "city planning elements", | |
"social_behaviors": "public interactions", | |
"european_features": "European architectural details", | |
"tourist_activities": "visitor activities", | |
"local_customs": "regional practices", | |
# 時間特定元素 | |
"lighting_effects": "artificial lighting", | |
"shadow_patterns": "light and shadow", | |
"urban_features": "city elements", | |
"illuminated_elements": "lit structures", | |
"evening_activities": "nighttime activities", | |
"light_sources": "lighting points", | |
"lit_areas": "illuminated spaces", | |
"shadowed_zones": "darker areas", | |
"illuminated_signage": "bright signs", | |
"colorful_lighting": "multicolored lights", | |
"neon_elements": "neon signs", | |
"night_crowd_behavior": "evening social patterns", | |
"light_displays": "lighting installations", | |
"building_features": "architectural elements", | |
"nightlife_activities": "evening entertainment", | |
"lighting_modifier": "bright", | |
# 混合環境元素 | |
"transitional_elements": "connecting features", | |
"indoor_features": "interior elements", | |
"outdoor_setting": "exterior spaces", | |
"interior_amenities": "inside comforts", | |
"exterior_features": "outside elements", | |
"inside_elements": "interior design", | |
"outside_spaces": "outdoor areas", | |
"dual_environment_benefits": "combined settings", | |
"passenger_activities": "waiting behaviors", | |
"transportation_types": "transit vehicles", | |
"sheltered_elements": "covered areas", | |
"exposed_areas": "open sections", | |
"waiting_behaviors": "passenger activities", | |
"indoor_facilities": "inside services", | |
"platform_features": "transit platform elements", | |
"transit_routines": "transportation procedures", | |
# 專門場所元素 | |
"seating_arrangement": "spectator seating", | |
"playing_surface": "athletic field", | |
"sporting_activities": "sports events", | |
"spectator_facilities": "viewer accommodations", | |
"competition_space": "sports arena", | |
"sports_events": "athletic competitions", | |
"viewing_areas": "audience sections", | |
"field_elements": "field markings and equipment", | |
"game_activities": "competitive play", | |
"construction_equipment": "building machinery", | |
"building_materials": "construction supplies", | |
"construction_activities": "building work", | |
"work_elements": "construction tools", | |
"structural_components": "building structures", | |
"site_equipment": "construction gear", | |
"raw_materials": "building supplies", | |
"construction_process": "building phases", | |
"medical_elements": "healthcare equipment", | |
"clinical_activities": "medical procedures", | |
"facility_design": "healthcare layout", | |
"healthcare_features": "medical facilities", | |
"patient_interactions": "care activities", | |
"equipment_types": "medical devices", | |
"care_procedures": "health services", | |
"treatment_spaces": "clinical areas", | |
"educational_furniture": "learning furniture", | |
"learning_activities": "educational practices", | |
"instructional_design": "teaching layout", | |
"classroom_elements": "school equipment", | |
"teaching_methods": "educational approaches", | |
"student_engagement": "learning participation", | |
"learning_spaces": "educational areas", | |
"educational_tools": "teaching resources", | |
"knowledge_transfer": "learning exchanges" | |
} | |
# For each placeholder, try to fill with appropriate content | |
for placeholder in placeholders: | |
if placeholder in fillers: | |
# Get random filler for this placeholder | |
options = fillers[placeholder] | |
if options: | |
# Select 1-3 items from the options list | |
num_items = min(len(options), random.randint(1, 3)) | |
selected_items = random.sample(options, num_items) | |
# Create a formatted list | |
if len(selected_items) == 1: | |
replacement = selected_items[0] | |
elif len(selected_items) == 2: | |
replacement = f"{selected_items[0]} and {selected_items[1]}" | |
else: | |
replacement = ", ".join(selected_items[:-1]) + f", and {selected_items[-1]}" | |
# Replace the placeholder | |
filled_template = filled_template.replace(f"{{{placeholder}}}", replacement) | |
else: | |
# Try to fill with scene-specific logic | |
replacement = self._generate_placeholder_content(placeholder, detected_objects, scene_type) | |
if replacement: | |
filled_template = filled_template.replace(f"{{{placeholder}}}", replacement) | |
elif placeholder in default_replacements: | |
# Use default replacement if available | |
filled_template = filled_template.replace(f"{{{placeholder}}}", default_replacements[placeholder]) | |
else: | |
# Last resort default | |
filled_template = filled_template.replace(f"{{{placeholder}}}", "various items") | |
return filled_template | |
def _generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str: | |
""" | |
Generate content for a template placeholder based on scene-specific logic. | |
Args: | |
placeholder: Template placeholder | |
detected_objects: List of detected objects | |
scene_type: Identified scene type | |
Returns: | |
str: Content for the placeholder | |
""" | |
# Handle different types of placeholders with custom logic | |
if placeholder == "furniture": | |
# Extract furniture items | |
furniture_ids = [56, 57, 58, 59, 60, 61] # Example furniture IDs | |
furniture_objects = [obj for obj in detected_objects if obj["class_id"] in furniture_ids] | |
if furniture_objects: | |
furniture_names = [obj["class_name"] for obj in furniture_objects[:3]] | |
return ", ".join(set(furniture_names)) | |
return "various furniture items" | |
elif placeholder == "electronics": | |
# Extract electronic items | |
electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # Example electronics IDs | |
electronics_objects = [obj for obj in detected_objects if obj["class_id"] in electronics_ids] | |
if electronics_objects: | |
electronics_names = [obj["class_name"] for obj in electronics_objects[:3]] | |
return ", ".join(set(electronics_names)) | |
return "electronic devices" | |
elif placeholder == "people_count": | |
# Count people | |
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) | |
if people_count == 0: | |
return "no people" | |
elif people_count == 1: | |
return "one person" | |
elif people_count < 5: | |
return f"{people_count} people" | |
else: | |
return "several people" | |
elif placeholder == "seating": | |
# Extract seating items | |
seating_ids = [56, 57] # chair, sofa | |
seating_objects = [obj for obj in detected_objects if obj["class_id"] in seating_ids] | |
if seating_objects: | |
seating_names = [obj["class_name"] for obj in seating_objects[:2]] | |
return ", ".join(set(seating_names)) | |
return "seating arrangements" | |
# Default case - empty string | |
return "" | |
def _generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str: | |
""" | |
Generate basic details when templates aren't available. | |
Args: | |
scene_type: Identified scene type | |
detected_objects: List of detected objects | |
Returns: | |
str: Basic scene details | |
""" | |
# Handle specific scene types with custom logic | |
if scene_type == "living_room": | |
tv_objs = [obj for obj in detected_objects if obj["class_id"] == 62] # TV | |
sofa_objs = [obj for obj in detected_objects if obj["class_id"] == 57] # Sofa | |
if tv_objs and sofa_objs: | |
tv_region = tv_objs[0]["region"] | |
sofa_region = sofa_objs[0]["region"] | |
arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, " | |
arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. " | |
return f"{arrangement}This appears to be a space designed for relaxation and entertainment." | |
elif scene_type == "bedroom": | |
bed_objs = [obj for obj in detected_objects if obj["class_id"] == 59] # Bed | |
if bed_objs: | |
bed_region = bed_objs[0]["region"] | |
extra_items = [] | |
for obj in detected_objects: | |
if obj["class_id"] == 74: # Clock | |
extra_items.append("clock") | |
elif obj["class_id"] == 73: # Book | |
extra_items.append("book") | |
extras = "" | |
if extra_items: | |
extras = f" There is also a {' and a '.join(extra_items)} visible." | |
return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}" | |
elif scene_type in ["dining_area", "kitchen"]: | |
# Count food and dining-related items | |
food_items = [] | |
for obj in detected_objects: | |
if obj["class_id"] in [39, 41, 42, 43, 44, 45]: # Kitchen items | |
food_items.append(obj["class_name"]) | |
food_str = "" | |
if food_items: | |
unique_items = list(set(food_items)) | |
if len(unique_items) <= 3: | |
food_str = f" with {', '.join(unique_items)}" | |
else: | |
food_str = f" with {', '.join(unique_items[:3])} and other items" | |
return f"{food_str}." | |
elif scene_type == "city_street": | |
# Count people and vehicles | |
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) | |
vehicle_count = len([obj for obj in detected_objects | |
if obj["class_id"] in [1, 2, 3, 5, 7]]) # Bicycle, car, motorbike, bus, truck | |
traffic_desc = "" | |
if people_count > 0 and vehicle_count > 0: | |
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and " | |
traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
elif people_count > 0: | |
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}" | |
elif vehicle_count > 0: | |
traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
return f"{traffic_desc}." | |
# Handle more specialized scenes | |
elif scene_type == "asian_commercial_street": | |
# Look for key urban elements | |
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) | |
vehicle_count = len([obj for obj in detected_objects if obj["class_id"] in [1, 2, 3]]) | |
# Analyze pedestrian distribution | |
people_positions = [] | |
for obj in detected_objects: | |
if obj["class_id"] == 0: # Person | |
people_positions.append(obj["normalized_center"]) | |
# Check if people are distributed along a line (indicating a walking path) | |
structured_path = False | |
if len(people_positions) >= 3: | |
# Simplified check - see if y-coordinates are similar for multiple people | |
y_coords = [pos[1] for pos in people_positions] | |
y_mean = sum(y_coords) / len(y_coords) | |
y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords) | |
if y_variance < 0.05: # Low variance indicates linear arrangement | |
structured_path = True | |
street_desc = "A commercial street with " | |
if people_count > 0: | |
street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}" | |
if vehicle_count > 0: | |
street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
elif vehicle_count > 0: | |
street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
else: | |
street_desc += "various commercial elements" | |
if structured_path: | |
street_desc += ". The pedestrians appear to be following a defined walking path" | |
# Add cultural elements | |
street_desc += ". The signage and architectural elements suggest an Asian urban setting." | |
return street_desc | |
# Default general description | |
return "The scene contains various elements characteristic of this environment." | |
def _detect_viewpoint(self, detected_objects: List[Dict]) -> str: | |
""" | |
改進視角檢測,特別加強對空中俯視視角的識別。 | |
Args: | |
detected_objects: 檢測到的物體列表 | |
Returns: | |
str: 檢測到的視角類型 | |
""" | |
if not detected_objects: | |
return "eye_level" # default | |
# 提取物體位置和大小 | |
top_region_count = 0 | |
bottom_region_count = 0 | |
total_objects = len(detected_objects) | |
# 追蹤大小分布以檢測空中視角 | |
sizes = [] | |
# 垂直大小比例用於低角度檢測 | |
height_width_ratios = [] | |
# 用於檢測規則圖案的變數 | |
people_positions = [] | |
crosswalk_pattern_detected = False | |
for obj in detected_objects: | |
# 計算頂部/底部區域中的物體 | |
region = obj["region"] | |
if "top" in region: | |
top_region_count += 1 | |
elif "bottom" in region: | |
bottom_region_count += 1 | |
# 計算標準化大小(面積) | |
if "normalized_area" in obj: | |
sizes.append(obj["normalized_area"]) | |
# 計算高度/寬度比例 | |
if "normalized_size" in obj: | |
width, height = obj["normalized_size"] | |
if width > 0: | |
height_width_ratios.append(height / width) | |
# 收集人的位置用於圖案檢測 | |
if obj["class_id"] == 0: # 人 | |
if "normalized_center" in obj: | |
people_positions.append(obj["normalized_center"]) | |
# 專門為斑馬線十字路口添加檢測邏輯 | |
# 檢查是否有明顯的垂直和水平行人分布 | |
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0] # 人 | |
if len(people_objs) >= 8: # 需要足夠多的人才能形成十字路口模式 | |
# 檢查是否有斑馬線模式 - 新增功能 | |
if len(people_positions) >= 4: | |
# 對位置進行聚類分析,尋找線性分布 | |
x_coords = [pos[0] for pos in people_positions] | |
y_coords = [pos[1] for pos in people_positions] | |
# 計算 x 和 y 坐標的變異數和範圍 | |
x_variance = np.var(x_coords) if len(x_coords) > 1 else 0 | |
y_variance = np.var(y_coords) if len(y_coords) > 1 else 0 | |
x_range = max(x_coords) - min(x_coords) | |
y_range = max(y_coords) - min(y_coords) | |
# 嘗試檢測十字形分布 | |
# 如果 x 和 y 方向都有較大範圍,且範圍相似,可能是十字路口 | |
if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3: | |
# 計算到中心點的距離 | |
center_x = np.mean(x_coords) | |
center_y = np.mean(y_coords) | |
# 將點映射到十字架的軸上(水平和垂直) | |
x_axis_distance = [abs(x - center_x) for x in x_coords] | |
y_axis_distance = [abs(y - center_y) for y in y_coords] | |
# 點應該接近軸線(水平或垂直) | |
# 對於每個點,檢查它是否接近水平或垂直軸線 | |
close_to_axis_count = 0 | |
for i in range(len(x_coords)): | |
if x_axis_distance[i] < 0.1 or y_axis_distance[i] < 0.1: | |
close_to_axis_count += 1 | |
# 如果足夠多的點接近軸線,認為是十字路口 | |
if close_to_axis_count >= len(x_coords) * 0.6: | |
crosswalk_pattern_detected = True | |
# 如果沒有檢測到十字形,嘗試檢測線性聚類分布 | |
if not crosswalk_pattern_detected: | |
# 檢查 x 和 y 方向的聚類 | |
x_clusters = self._detect_linear_clusters(x_coords) | |
y_clusters = self._detect_linear_clusters(y_coords) | |
# 如果在 x 和 y 方向上都有多個聚類,可能是交叉的斑馬線 | |
if len(x_clusters) >= 2 and len(y_clusters) >= 2: | |
crosswalk_pattern_detected = True | |
# 檢測斑馬線模式 - 優先判斷 | |
if crosswalk_pattern_detected: | |
return "aerial" | |
# 檢測行人分布情況 | |
if len(people_objs) >= 10: | |
people_region_counts = {} | |
for obj in people_objs: | |
region = obj["region"] | |
if region not in people_region_counts: | |
people_region_counts[region] = 0 | |
people_region_counts[region] += 1 | |
# 計算不同區域中的行人數量 | |
region_count = len([r for r, c in people_region_counts.items() if c >= 2]) | |
# 如果行人分布在多個區域中,可能是空中視角 | |
if region_count >= 4: | |
# 檢查行人分布的模式 | |
# 特別是檢查不同區域中行人數量的差異 | |
region_counts = list(people_region_counts.values()) | |
region_counts_variance = np.var(region_counts) if len(region_counts) > 1 else 0 | |
region_counts_mean = np.mean(region_counts) if region_counts else 0 | |
# 如果行人分布較為均勻(變異係數小),可能是空中視角 | |
if region_counts_mean > 0: | |
variation_coefficient = region_counts_variance / region_counts_mean | |
if variation_coefficient < 0.5: | |
return "aerial" | |
# 計算指標 | |
top_ratio = top_region_count / total_objects if total_objects > 0 else 0 | |
bottom_ratio = bottom_region_count / total_objects if total_objects > 0 else 0 | |
# 大小變異數(標準化) | |
size_variance = 0 | |
if sizes: | |
mean_size = sum(sizes) / len(sizes) | |
size_variance = sum((s - mean_size) ** 2 for s in sizes) / len(sizes) | |
size_variance = size_variance / (mean_size ** 2) # 標準化 | |
# 平均高度/寬度比例 | |
avg_height_width_ratio = sum(height_width_ratios) / len(height_width_ratios) if height_width_ratios else 1.0 | |
# 空中視角:低大小差異,物體均勻分布,底部很少或沒有物體 | |
if (size_variance < self.viewpoint_params["aerial_size_variance_threshold"] and | |
bottom_ratio < 0.3 and top_ratio > self.viewpoint_params["aerial_threshold"]): | |
return "aerial" | |
# 低角度視角:物體傾向於比寬高,頂部較多物體 | |
elif (avg_height_width_ratio > self.viewpoint_params["vertical_size_ratio_threshold"] and | |
top_ratio > self.viewpoint_params["low_angle_threshold"]): | |
return "low_angle" | |
# 高視角:底部較多物體,頂部較少 | |
elif (bottom_ratio > self.viewpoint_params["elevated_threshold"] and | |
top_ratio < self.viewpoint_params["elevated_top_threshold"]): | |
return "elevated" | |
# 默認:平視角 | |
return "eye_level" | |
def _detect_linear_clusters(self, coords, threshold=0.05): | |
""" | |
檢測坐標中的線性聚類 | |
Args: | |
coords: 一維坐標列表 | |
threshold: 聚類閾值 | |
Returns: | |
list: 聚類列表 | |
""" | |
if not coords: | |
return [] | |
# 排序坐標 | |
sorted_coords = sorted(coords) | |
clusters = [] | |
current_cluster = [sorted_coords[0]] | |
for i in range(1, len(sorted_coords)): | |
# 如果當前坐標與前一個接近,添加到當前聚類 | |
if sorted_coords[i] - sorted_coords[i-1] < threshold: | |
current_cluster.append(sorted_coords[i]) | |
else: | |
# 否則開始新的聚類 | |
if len(current_cluster) >= 2: # 至少需要2個點形成聚類 | |
clusters.append(current_cluster) | |
current_cluster = [sorted_coords[i]] | |
# 添加最後一個cluster | |
if len(current_cluster) >= 2: | |
clusters.append(current_cluster) | |
return clusters | |
def _detect_cultural_context(self, scene_type: str, detected_objects: List[Dict]) -> Optional[str]: | |
""" | |
Detect the likely cultural context of the scene. | |
Args: | |
scene_type: Identified scene type | |
detected_objects: List of detected objects | |
Returns: | |
Optional[str]: Detected cultural context (asian, european, etc.) or None | |
""" | |
# Scene types with explicit cultural contexts | |
cultural_scene_mapping = { | |
"asian_commercial_street": "asian", | |
"asian_night_market": "asian", | |
"asian_temple_area": "asian", | |
"european_plaza": "european" | |
} | |
# Check if scene type directly indicates cultural context | |
if scene_type in cultural_scene_mapping: | |
return cultural_scene_mapping[scene_type] | |
# No specific cultural context detected | |
return None | |
def _generate_cultural_elements(self, cultural_context: str) -> str: | |
""" | |
Generate description of cultural elements for the detected context. | |
Args: | |
cultural_context: Detected cultural context | |
Returns: | |
str: Description of cultural elements | |
""" | |
# Get template for this cultural context | |
cultural_templates = self.templates.get("cultural_templates", {}) | |
if cultural_context in cultural_templates: | |
template = cultural_templates[cultural_context] | |
elements = template.get("elements", []) | |
if elements: | |
# Select 1-2 random elements | |
num_elements = min(len(elements), random.randint(1, 2)) | |
selected_elements = random.sample(elements, num_elements) | |
# Format elements list | |
elements_text = " and ".join(selected_elements) if num_elements == 2 else selected_elements[0] | |
# Fill template | |
return template.get("description", "").format(elements=elements_text) | |
return "" | |
def _optimize_object_description(self, description: str) -> str: | |
""" | |
優化物品描述,避免重複列舉相同物品 | |
""" | |
import re | |
# 處理床鋪重複描述 | |
if "bed in the room" in description: | |
description = description.replace("a bed in the room", "a bed") | |
# 處理重複的物品列表 | |
# 尋找格式如 "item, item, item" 的模式 | |
object_lists = re.findall(r'with ([^\.]+?)(?:\.|\band\b)', description) | |
for obj_list in object_lists: | |
# 計算每個物品出現次數 | |
items = re.findall(r'([a-zA-Z\s]+)(?:,|\band\b|$)', obj_list) | |
item_counts = {} | |
for item in items: | |
item = item.strip() | |
if item and item not in ["and", "with"]: | |
if item not in item_counts: | |
item_counts[item] = 0 | |
item_counts[item] += 1 | |
# 生成優化後的物品列表 | |
if item_counts: | |
new_items = [] | |
for item, count in item_counts.items(): | |
if count > 1: | |
new_items.append(f"{count} {item}s") | |
else: | |
new_items.append(item) | |
# 格式化新列表 | |
if len(new_items) == 1: | |
new_list = new_items[0] | |
elif len(new_items) == 2: | |
new_list = f"{new_items[0]} and {new_items[1]}" | |
else: | |
new_list = ", ".join(new_items[:-1]) + f", and {new_items[-1]}" | |
# 替換原始列表 | |
description = description.replace(obj_list, new_list) | |
return description | |
def _describe_functional_zones(self, functional_zones: Dict) -> str: | |
""" | |
生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題。 | |
Args: | |
functional_zones: 識別出的功能區域字典 | |
Returns: | |
str: 功能區域描述 | |
""" | |
if not functional_zones: | |
return "" | |
# 計算場景中的總人數 | |
total_people_count = 0 | |
people_by_zone = {} | |
# 計算每個區域的人數並累計總人數 | |
for zone_name, zone_info in functional_zones.items(): | |
if "objects" in zone_info: | |
zone_people_count = zone_info["objects"].count("person") | |
people_by_zone[zone_name] = zone_people_count | |
total_people_count += zone_people_count | |
# 分類區域為行人區域和其他區域 | |
pedestrian_zones = [] | |
other_zones = [] | |
for zone_name, zone_info in functional_zones.items(): | |
# 檢查是否是行人相關區域 | |
if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]): | |
pedestrian_zones.append((zone_name, zone_info)) | |
else: | |
other_zones.append((zone_name, zone_info)) | |
# 獲取最重要的行人區域和其他區域 | |
main_pedestrian_zones = sorted(pedestrian_zones, | |
key=lambda z: people_by_zone.get(z[0], 0), | |
reverse=True)[:1] # 最多1個主要行人區域 | |
top_other_zones = sorted(other_zones, | |
key=lambda z: len(z[1].get("objects", [])), | |
reverse=True)[:2] # 最多2個其他區域 | |
# 合併區域 | |
top_zones = main_pedestrian_zones + top_other_zones | |
if not top_zones: | |
return "" | |
# 生成匯總描述 | |
summary = "" | |
max_mentioned_people = 0 # 跟踪已經提到的最大人數 | |
# 如果總人數顯著且還沒在主描述中提到,添加總人數描述 | |
if total_people_count > 5: | |
summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). " | |
max_mentioned_people = total_people_count # 更新已提到的最大人數 | |
# 處理每個區域的描述,確保人數信息的一致性 | |
processed_zones = [] | |
for zone_name, zone_info in top_zones: | |
zone_desc = zone_info.get("description", "a functional zone") | |
zone_people_count = people_by_zone.get(zone_name, 0) | |
# 檢查描述中是否包含人數信息 | |
contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower()) | |
# 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述 | |
if contains_people_info and zone_people_count < max_mentioned_people: | |
parts = zone_desc.split("with") | |
if len(parts) > 1: | |
# 移除人數部分 | |
zone_desc = parts[0].strip() + " area" | |
processed_zones.append((zone_name, {"description": zone_desc})) | |
# 根據處理後的區域數量生成最終描述 | |
final_desc = "" | |
if len(processed_zones) == 1: | |
_, zone_info = processed_zones[0] | |
zone_desc = zone_info["description"] | |
final_desc = summary + f"The scene includes {zone_desc}." | |
elif len(processed_zones) == 2: | |
_, zone1_info = processed_zones[0] | |
_, zone2_info = processed_zones[1] | |
zone1_desc = zone1_info["description"] | |
zone2_desc = zone2_info["description"] | |
final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}." | |
else: | |
zones_desc = ["The scene contains multiple functional areas including"] | |
zone_descriptions = [z[1]["description"] for z in processed_zones] | |
# 格式化最終的多區域描述 | |
if len(zone_descriptions) == 3: | |
formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}" | |
else: | |
formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}" | |
final_desc = summary + f"{zones_desc[0]} {formatted_desc}." | |
return self._optimize_object_description(final_desc) | |