DawnC commited on
Commit
ef9be46
·
1 Parent(s): 6442fd4

update app.py, styles.py, dmanifest, service worker and icon for mobile prepare

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
ConvNextV2Base_best_model.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3d10b865b83d0fcda631e31e1aac7b2b51f43dc139674706611bd5c1b68afd8
3
- size 413251664
 
 
 
 
app.py CHANGED
@@ -61,7 +61,7 @@ class ModelManager:
61
  if not ModelManager._initialized:
62
  self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
63
  ModelManager._initialized = True
64
-
65
  @property
66
  def device(self):
67
  if self._device is None:
@@ -78,10 +78,10 @@ class ModelManager:
78
  def breed_model(self):
79
  if self._breed_model is None:
80
  self._breed_model = BaseModel(
81
- num_classes=len(dog_breeds),
82
  device=self.device
83
  ).to(self.device)
84
-
85
  checkpoint = torch.load(
86
  'ConvNextV2Base_best_model.pth',
87
  map_location=self.device
@@ -110,18 +110,18 @@ def preprocess_image(image):
110
  def predict_single_dog(image):
111
  """Predicts dog breed for a single image"""
112
  image_tensor = preprocess_image(image).to(model_manager.device)
113
-
114
  with torch.no_grad():
115
  logits = model_manager.breed_model(image_tensor)[0]
116
  probs = F.softmax(logits, dim=1)
117
-
118
  top5_prob, top5_idx = torch.topk(probs, k=5)
119
  breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
120
  probabilities = [prob.item() for prob in top5_prob[0]]
121
-
122
  sum_probs = sum(probabilities[:3])
123
  relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
124
-
125
  return probabilities[0], breeds[:3], relative_probs
126
 
127
  def enhanced_preprocess(image, is_standing=False, has_overlap=False):
@@ -131,7 +131,7 @@ def enhanced_preprocess(image, is_standing=False, has_overlap=False):
131
  """
132
  target_size = 224
133
  w, h = image.size
134
-
135
  if is_standing:
136
  if h > w * 1.5:
137
  new_h = target_size
@@ -145,13 +145,13 @@ def enhanced_preprocess(image, is_standing=False, has_overlap=False):
145
  scale = min(target_size/w, target_size/h)
146
  new_w = int(w * scale)
147
  new_h = int(h * scale)
148
-
149
  resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
150
  final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
151
  paste_x = (target_size - new_w) // 2
152
  paste_y = (target_size - new_h) // 2
153
  final_image.paste(resized, (paste_x, paste_y))
154
-
155
  return final_image
156
 
157
  @spaces.GPU
@@ -163,7 +163,7 @@ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
163
  results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
164
  img_width, img_height = image.size
165
  detected_boxes = []
166
-
167
  # Phase 1: Initial detection and processing
168
  for box in results.boxes:
169
  if box.cls.item() == 16: # Dog class
@@ -172,7 +172,7 @@ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
172
  x1, y1, x2, y2 = map(int, xyxy)
173
  w = x2 - x1
174
  h = y2 - y1
175
-
176
  detected_boxes.append({
177
  'coords': [x1, y1, x2, y2],
178
  'width': w,
@@ -183,55 +183,55 @@ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
183
  'confidence': confidence,
184
  'aspect_ratio': w / h if h != 0 else 1
185
  })
186
-
187
  if not detected_boxes:
188
  return [(image, 1.0, [0, 0, img_width, img_height], False)]
189
-
190
  # Phase 2: Analysis of detection relationships
191
  avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
192
  avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
193
  avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
194
-
195
  def calculate_iou(box1, box2):
196
  x1 = max(box1['coords'][0], box2['coords'][0])
197
  y1 = max(box1['coords'][1], box2['coords'][1])
198
  x2 = min(box1['coords'][2], box2['coords'][2])
199
  y2 = min(box1['coords'][3], box2['coords'][3])
200
-
201
  if x2 <= x1 or y2 <= y1:
202
  return 0.0
203
-
204
  intersection = (x2 - x1) * (y2 - y1)
205
  area1 = box1['area']
206
  area2 = box2['area']
207
  return intersection / (area1 + area2 - intersection)
208
-
209
  # Phase 3: Processing each detection
210
  processed_boxes = []
211
  overlap_threshold = 0.2
212
-
213
  for i, box_info in enumerate(detected_boxes):
214
  x1, y1, x2, y2 = box_info['coords']
215
  w = box_info['width']
216
  h = box_info['height']
217
  center_x = box_info['center_x']
218
  center_y = box_info['center_y']
219
-
220
  # Check for overlaps
221
  has_overlap = False
222
  for j, other_box in enumerate(detected_boxes):
223
  if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
224
  has_overlap = True
225
  break
226
-
227
  # Adjust expansion strategy
228
  base_expansion = 0.03
229
  max_expansion = 0.05
230
-
231
  is_standing = h > 1.5 * w
232
  is_sitting = 0.8 <= h/w <= 1.2
233
  is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
234
-
235
  if has_overlap:
236
  h_expansion = w_expansion = base_expansion * 0.8
237
  else:
@@ -242,41 +242,41 @@ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
242
  h_expansion = w_expansion = base_expansion
243
  else:
244
  h_expansion = w_expansion = base_expansion * 0.9
245
-
246
  # Position compensation
247
  if center_x < img_width * 0.2 or center_x > img_width * 0.8:
248
  w_expansion *= 0.9
249
-
250
  if is_abnormal_size:
251
  h_expansion *= 0.8
252
  w_expansion *= 0.8
253
-
254
  # Calculate final bounding box
255
  expansion_w = w * w_expansion
256
  expansion_h = h * h_expansion
257
-
258
  new_x1 = max(0, center_x - (w + expansion_w)/2)
259
  new_y1 = max(0, center_y - (h + expansion_h)/2)
260
  new_x2 = min(img_width, center_x + (w + expansion_w)/2)
261
  new_y2 = min(img_height, center_y + (h + expansion_h)/2)
262
-
263
  # Crop and process image
264
- cropped_image = image.crop((int(new_x1), int(new_y1),
265
  int(new_x2), int(new_y2)))
266
-
267
  processed_image = enhanced_preprocess(
268
  cropped_image,
269
  is_standing=is_standing,
270
  has_overlap=has_overlap
271
  )
272
-
273
  processed_boxes.append((
274
- processed_image,
275
  box_info['confidence'],
276
- [new_x1, new_y1, new_x2, new_y2],
277
  True
278
  ))
279
-
280
  return processed_boxes
281
 
282
  @spaces.GPU
@@ -443,6 +443,19 @@ def main():
443
  # Header HTML
444
 
445
  gr.HTML("""
 
 
 
 
 
 
 
 
 
 
 
 
 
446
  <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
447
  <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
448
  🐾 PawMatch AI
@@ -522,4 +535,4 @@ def main():
522
 
523
  if __name__ == "__main__":
524
  iface = main()
525
- iface.launch()
 
61
  if not ModelManager._initialized:
62
  self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
63
  ModelManager._initialized = True
64
+
65
  @property
66
  def device(self):
67
  if self._device is None:
 
78
  def breed_model(self):
79
  if self._breed_model is None:
80
  self._breed_model = BaseModel(
81
+ num_classes=len(dog_breeds),
82
  device=self.device
83
  ).to(self.device)
84
+
85
  checkpoint = torch.load(
86
  'ConvNextV2Base_best_model.pth',
87
  map_location=self.device
 
110
  def predict_single_dog(image):
111
  """Predicts dog breed for a single image"""
112
  image_tensor = preprocess_image(image).to(model_manager.device)
113
+
114
  with torch.no_grad():
115
  logits = model_manager.breed_model(image_tensor)[0]
116
  probs = F.softmax(logits, dim=1)
117
+
118
  top5_prob, top5_idx = torch.topk(probs, k=5)
119
  breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
120
  probabilities = [prob.item() for prob in top5_prob[0]]
121
+
122
  sum_probs = sum(probabilities[:3])
123
  relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
124
+
125
  return probabilities[0], breeds[:3], relative_probs
126
 
127
  def enhanced_preprocess(image, is_standing=False, has_overlap=False):
 
131
  """
132
  target_size = 224
133
  w, h = image.size
134
+
135
  if is_standing:
136
  if h > w * 1.5:
137
  new_h = target_size
 
145
  scale = min(target_size/w, target_size/h)
146
  new_w = int(w * scale)
147
  new_h = int(h * scale)
148
+
149
  resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
150
  final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
151
  paste_x = (target_size - new_w) // 2
152
  paste_y = (target_size - new_h) // 2
153
  final_image.paste(resized, (paste_x, paste_y))
154
+
155
  return final_image
156
 
157
  @spaces.GPU
 
163
  results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
164
  img_width, img_height = image.size
165
  detected_boxes = []
166
+
167
  # Phase 1: Initial detection and processing
168
  for box in results.boxes:
169
  if box.cls.item() == 16: # Dog class
 
172
  x1, y1, x2, y2 = map(int, xyxy)
173
  w = x2 - x1
174
  h = y2 - y1
175
+
176
  detected_boxes.append({
177
  'coords': [x1, y1, x2, y2],
178
  'width': w,
 
183
  'confidence': confidence,
184
  'aspect_ratio': w / h if h != 0 else 1
185
  })
186
+
187
  if not detected_boxes:
188
  return [(image, 1.0, [0, 0, img_width, img_height], False)]
189
+
190
  # Phase 2: Analysis of detection relationships
191
  avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
192
  avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
193
  avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
194
+
195
  def calculate_iou(box1, box2):
196
  x1 = max(box1['coords'][0], box2['coords'][0])
197
  y1 = max(box1['coords'][1], box2['coords'][1])
198
  x2 = min(box1['coords'][2], box2['coords'][2])
199
  y2 = min(box1['coords'][3], box2['coords'][3])
200
+
201
  if x2 <= x1 or y2 <= y1:
202
  return 0.0
203
+
204
  intersection = (x2 - x1) * (y2 - y1)
205
  area1 = box1['area']
206
  area2 = box2['area']
207
  return intersection / (area1 + area2 - intersection)
208
+
209
  # Phase 3: Processing each detection
210
  processed_boxes = []
211
  overlap_threshold = 0.2
212
+
213
  for i, box_info in enumerate(detected_boxes):
214
  x1, y1, x2, y2 = box_info['coords']
215
  w = box_info['width']
216
  h = box_info['height']
217
  center_x = box_info['center_x']
218
  center_y = box_info['center_y']
219
+
220
  # Check for overlaps
221
  has_overlap = False
222
  for j, other_box in enumerate(detected_boxes):
223
  if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
224
  has_overlap = True
225
  break
226
+
227
  # Adjust expansion strategy
228
  base_expansion = 0.03
229
  max_expansion = 0.05
230
+
231
  is_standing = h > 1.5 * w
232
  is_sitting = 0.8 <= h/w <= 1.2
233
  is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
234
+
235
  if has_overlap:
236
  h_expansion = w_expansion = base_expansion * 0.8
237
  else:
 
242
  h_expansion = w_expansion = base_expansion
243
  else:
244
  h_expansion = w_expansion = base_expansion * 0.9
245
+
246
  # Position compensation
247
  if center_x < img_width * 0.2 or center_x > img_width * 0.8:
248
  w_expansion *= 0.9
249
+
250
  if is_abnormal_size:
251
  h_expansion *= 0.8
252
  w_expansion *= 0.8
253
+
254
  # Calculate final bounding box
255
  expansion_w = w * w_expansion
256
  expansion_h = h * h_expansion
257
+
258
  new_x1 = max(0, center_x - (w + expansion_w)/2)
259
  new_y1 = max(0, center_y - (h + expansion_h)/2)
260
  new_x2 = min(img_width, center_x + (w + expansion_w)/2)
261
  new_y2 = min(img_height, center_y + (h + expansion_h)/2)
262
+
263
  # Crop and process image
264
+ cropped_image = image.crop((int(new_x1), int(new_y1),
265
  int(new_x2), int(new_y2)))
266
+
267
  processed_image = enhanced_preprocess(
268
  cropped_image,
269
  is_standing=is_standing,
270
  has_overlap=has_overlap
271
  )
272
+
273
  processed_boxes.append((
274
+ processed_image,
275
  box_info['confidence'],
276
+ [new_x1, new_y1, new_x2, new_y2],
277
  True
278
  ))
279
+
280
  return processed_boxes
281
 
282
  @spaces.GPU
 
443
  # Header HTML
444
 
445
  gr.HTML("""
446
+ <head>
447
+ <link rel="manifest" href="manifest.json">
448
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
449
+ <meta name="theme-color" content="#4299e1">
450
+ <link rel="apple-touch-icon" href="assets/icon-192.png">
451
+ </head>
452
+ <script>
453
+ if ('serviceWorker' in navigator) {
454
+ window.addEventListener('load', () => {
455
+ navigator.serviceWorker.register('/service-worker.js');
456
+ });
457
+ }
458
+ </script>
459
  <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
460
  <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
461
  🐾 PawMatch AI
 
535
 
536
  if __name__ == "__main__":
537
  iface = main()
538
+ iface.launch()
assets/icon-192.png ADDED
assets/icon-512.png ADDED
manifest.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "PawMatch AI",
3
+ "short_name": "PawMatch",
4
+ "start_url": ".",
5
+ "display": "standalone",
6
+ "background_color": "#ffffff",
7
+ "theme_color": "#4299e1",
8
+ "description": "Your Smart Dog Breed Guide",
9
+ "icons": [
10
+ {
11
+ "src": "assets/icon-192.png",
12
+ "sizes": "192x192",
13
+ "type": "image/png"
14
+ },
15
+ {
16
+ "src": "assets/icon-512.png",
17
+ "sizes": "512x512",
18
+ "type": "image/png"
19
+ }
20
+ ]
21
+ }
service-worker.js ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ const CACHE_NAME = 'pawmatch-v1';
2
+ const urlsToCache = [
3
+ '/',
4
+ '/index.html',
5
+ '/assets/icon-192.png',
6
+ '/assets/icon-512.png'
7
+ ];
8
+
9
+ self.addEventListener('install', (event) => {
10
+ event.waitUntil(
11
+ caches.open(CACHE_NAME).then((cache) => {
12
+ return cache.addAll(urlsToCache);
13
+ })
14
+ );
15
+ });
16
+
17
+ self.addEventListener('fetch', (event) => {
18
+ event.respondWith(
19
+ caches.match(event.request).then((response) => {
20
+ return response || fetch(event.request);
21
+ })
22
+ );
23
+ });
styles.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  def get_css_styles():
3
  return """
4
  .dog-info-card {
@@ -15,7 +14,7 @@ def get_css_styles():
15
  .dog-info-card:hover {
16
  box-shadow: 0 4px 16px rgba(0,0,0,0.12);
17
  }
18
- .dog-info-card:before {
19
  content: '';
20
  position: absolute;
21
  left: 0;
@@ -840,15 +839,15 @@ def get_css_styles():
840
  background: #e9ecef;
841
  border-radius: 2px;
842
  }
843
- .level-indicator.low .bar:nth-child(1) {
844
- background: #4CAF50;
845
  }
846
  .level-indicator.medium .bar:nth-child(1),
847
- .level-indicator.medium .bar:nth-child(2) {
848
- background: #FFA726;
849
  }
850
- .level-indicator.high .bar {
851
- background: #EF5350;
852
  }
853
  .feature-list, .health-list, .screening-list {
854
  list-style: none;
@@ -1071,24 +1070,52 @@ def get_css_styles():
1071
  }
1072
 
1073
  @media (max-width: 768px) {
1074
- /* 在小螢幕上改為單列顯示 */
1075
- .health-grid, .noise-grid {
1076
- grid-template-columns: 1fr;
 
 
 
 
 
 
1077
  }
1078
-
1079
- /* 減少內邊距 */
1080
- .health-section, .noise-section {
1081
- padding: 16px;
 
 
 
 
1082
  }
1083
 
1084
- /* 調整字體大小 */
1085
- .section-header {
1086
- font-size: 1rem;
1087
  }
1088
-
1089
- /* 調整項目內邊距 */
1090
- .health-item, .noise-item {
1091
- padding: 10px 14px;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092
  }
1093
  }
1094
 
@@ -1153,7 +1180,56 @@ def get_css_styles():
1153
 
1154
  .section-header h3 .tooltip .tooltip-text::after {
1155
  right: calc(100% - 2px); /* 向右移動箭頭 */
1156
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
  }
1158
-
1159
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def get_css_styles():
2
  return """
3
  .dog-info-card {
 
14
  .dog-info-card:hover {
15
  box-shadow: 0 4px 16px rgba(0,0,0,0.12);
16
  }
17
+ .dog-info-card:before {
18
  content: '';
19
  position: absolute;
20
  left: 0;
 
839
  background: #e9ecef;
840
  border-radius: 2px;
841
  }
842
+ .level-indicator.low .bar:nth-child(1) {
843
+ background: #4CAF50;
844
  }
845
  .level-indicator.medium .bar:nth-child(1),
846
+ .level-indicator.medium .bar:nth-child(2) {
847
+ background: #FFA726;
848
  }
849
+ .level-indicator.high .bar {
850
+ background: #EF5350;
851
  }
852
  .feature-list, .health-list, .screening-list {
853
  list-style: none;
 
1070
  }
1071
 
1072
  @media (max-width: 768px) {
1073
+ .info-cards {
1074
+ grid-template-columns: 1fr !important; /* 在手機上改為單列 */
1075
+ gap: 12px !important;
1076
+ padding: 10px !important;
1077
+ width: 100% !important;
1078
+ box-sizing: border-box !important;
1079
+ min-height: auto !important; /* 在手機上移除最小高度限制 */
1080
+ height: auto !important; /* 允許高度自適應 */
1081
+ padding: 12px !important; /* 稍微減少填充 */
1082
  }
1083
+
1084
+ .info-card {
1085
+ width: 100% !important;
1086
+ margin: 0 !important;
1087
+ padding: 12px !important;
1088
+ min-height: auto !important; /* 移除最小高度限制 */
1089
+ height: auto !important; /* 允許高度自適應 */
1090
+ overflow: visible !important; /* 確保內容不被切斷 */
1091
  }
1092
 
1093
+ .info-card .tooltip {
1094
+ flex-wrap: wrap !important; /* 在手機版允許換行 */
 
1095
  }
1096
+ .info-card span {
1097
+ display: block !important; /* 確保文字完整顯示 */
1098
+ overflow: visible !important;
1099
+ }
1100
+
1101
+ .tooltip {
1102
+ width: 100% !important;
1103
+ display: flex !important;
1104
+ align-items: center !important;
1105
+ gap: 8px !important;
1106
+ }
1107
+
1108
+ .tooltip-text {
1109
+ left: auto !important;
1110
+ right: 0 !important;
1111
+ width: 200px !important;
1112
+ }
1113
+
1114
+ /* 確保所有文字可見 */
1115
+ .label, .value {
1116
+ overflow: visible !important;
1117
+ white-space: normal !important;
1118
+ word-wrap: break-word !important;
1119
  }
1120
  }
1121
 
 
1180
 
1181
  .section-header h3 .tooltip .tooltip-text::after {
1182
  right: calc(100% - 2px); /* 向右移動箭頭 */
1183
+
1184
+ }
1185
+
1186
+ .analysis-container {
1187
+ padding: 20px;
1188
+ background: white;
1189
+ border-radius: 10px;
1190
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
1191
+ }
1192
+
1193
+ .metrics-grid {
1194
+ display: grid;
1195
+ grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
1196
+ gap: 20px;
1197
+ margin-top: 20px;
1198
  }
1199
+
1200
+ .metric-card {
1201
+ padding: 20px;
1202
+ background: #f8fafc;
1203
+ border-radius: 8px;
1204
+ text-align: center;
1205
+ }
1206
+
1207
+ .metric-value {
1208
+ font-size: 24px;
1209
+ font-weight: bold;
1210
+ color: #2563eb;
1211
+ }
1212
+
1213
+ .metric-details {
1214
+ padding: 15px;
1215
+ background: #f8fafc;
1216
+ border-radius: 8px;
1217
+ margin: 10px 0;
1218
+ }
1219
+
1220
+ .metric-details h3 {
1221
+ color: #1e40af;
1222
+ margin-bottom: 10px;
1223
+ }
1224
+
1225
+ .metric-details ul {
1226
+ list-style-type: none;
1227
+ padding: 0;
1228
+ }
1229
+
1230
+ .metric-details li {
1231
+ margin: 5px 0;
1232
+ color: #4b5563;
1233
+ }
1234
+
1235
+ """