Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -272,6 +272,34 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
272 |
"""
|
273 |
return formatted_description
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
def predict(image):
|
276 |
if image is None:
|
277 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
272 |
"""
|
273 |
return formatted_description
|
274 |
|
275 |
+
def predict_single_dog(image):
|
276 |
+
# 直接使用模型進行預測,無需通過 YOLO
|
277 |
+
image_tensor = preprocess_image(image)
|
278 |
+
with torch.no_grad():
|
279 |
+
output = model(image_tensor)
|
280 |
+
logits = output[0] if isinstance(output, tuple) else output
|
281 |
+
probabilities = F.softmax(logits, dim=1)
|
282 |
+
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
283 |
+
top1_prob = topk_probs[0][0].item()
|
284 |
+
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
285 |
+
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
286 |
+
return top1_prob, topk_breeds, topk_probs_percent
|
287 |
+
|
288 |
+
|
289 |
+
def detect_multiple_dogs(image):
|
290 |
+
# 使用 YOLO 檢測多隻狗
|
291 |
+
results = model_yolo(image)
|
292 |
+
dogs = []
|
293 |
+
for result in results:
|
294 |
+
for box in result.boxes:
|
295 |
+
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
296 |
+
xyxy = box.xyxy[0].tolist()
|
297 |
+
confidence = box.conf.item()
|
298 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
299 |
+
dogs.append((cropped_image, confidence, xyxy))
|
300 |
+
return dogs
|
301 |
+
|
302 |
+
|
303 |
def predict(image):
|
304 |
if image is None:
|
305 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|