DawnC commited on
Commit
b5f9623
1 Parent(s): 08673dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -32
app.py CHANGED
@@ -20,7 +20,7 @@ logger = logging.getLogger(__name__)
20
 
21
 
22
  # 下載YOLOv8預訓練模型
23
- model_yolo = YOLO('yolov8m.pt') # 使用 YOLOv8 預訓練模型
24
 
25
 
26
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
@@ -167,56 +167,34 @@ async def predict_single_dog(image):
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
170
- # async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.6):
171
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
- # dogs = []
173
- # boxes = []
174
- # for box in results.boxes:
175
- # if box.cls == 16: # COCO dataset class for dog is 16
176
- # xyxy = box.xyxy[0].tolist()
177
- # confidence = box.conf.item()
178
- # boxes.append((xyxy, confidence))
179
-
180
- # if not boxes:
181
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
182
- # else:
183
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
184
-
185
- # for box, confidence in nms_boxes:
186
- # x1, y1, x2, y2 = box
187
- # w, h = x2 - x1, y2 - y1
188
- # x1 = max(0, x1 - w * 0.05)
189
- # y1 = max(0, y1 - h * 0.05)
190
- # x2 = min(image.width, x2 + w * 0.05)
191
- # y2 = min(image.height, y2 + h * 0.05)
192
- # cropped_image = image.crop((x1, y1, x2, y2))
193
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
-
195
- # return dogs
196
-
197
- async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
199
  dogs = []
200
  boxes = []
201
  for box in results.boxes:
202
- if box.cls == 16: # 狗類別
203
  xyxy = box.xyxy[0].tolist()
204
  confidence = box.conf.item()
205
  boxes.append((xyxy, confidence))
206
 
207
  if not boxes:
208
- # 當沒檢測到狗時,使用完整圖片
209
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
210
  else:
211
  nms_boxes = non_max_suppression(boxes, iou_threshold)
 
212
  for box, confidence in nms_boxes:
213
  x1, y1, x2, y2 = box
 
 
 
 
 
214
  cropped_image = image.crop((x1, y1, x2, y2))
215
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
 
216
  return dogs
217
 
218
 
219
-
220
  def non_max_suppression(boxes, iou_threshold):
221
  keep = []
222
  boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
 
20
 
21
 
22
  # 下載YOLOv8預訓練模型
23
+ model_yolo = YOLO('yolov8s.pt') # 使用 YOLOv8 預訓練模型
24
 
25
 
26
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
 
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
170
+ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.6):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
  dogs = []
173
  boxes = []
174
  for box in results.boxes:
175
+ if box.cls == 16: # COCO dataset class for dog is 16
176
  xyxy = box.xyxy[0].tolist()
177
  confidence = box.conf.item()
178
  boxes.append((xyxy, confidence))
179
 
180
  if not boxes:
 
181
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
182
  else:
183
  nms_boxes = non_max_suppression(boxes, iou_threshold)
184
+
185
  for box, confidence in nms_boxes:
186
  x1, y1, x2, y2 = box
187
+ w, h = x2 - x1, y2 - y1
188
+ x1 = max(0, x1 - w * 0.05)
189
+ y1 = max(0, y1 - h * 0.05)
190
+ x2 = min(image.width, x2 + w * 0.05)
191
+ y2 = min(image.height, y2 + h * 0.05)
192
  cropped_image = image.crop((x1, y1, x2, y2))
193
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
+
195
  return dogs
196
 
197
 
 
198
  def non_max_suppression(boxes, iou_threshold):
199
  keep = []
200
  boxes = sorted(boxes, key=lambda x: x[1], reverse=True)