Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -132,6 +132,18 @@ def get_akc_breeds_link(breed):
|
|
132 |
return f"{base_url}{breed_url}/"
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
async def predict_single_dog(image):
|
137 |
image_tensor = preprocess_image(image)
|
@@ -142,8 +154,13 @@ async def predict_single_dog(image):
|
|
142 |
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
143 |
top1_prob = topk_probs[0][0].item()
|
144 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
|
149 |
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
@@ -198,66 +215,210 @@ def calculate_iou(box1, box2):
|
|
198 |
|
199 |
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
async def process_single_dog(image):
|
202 |
-
top1_prob, topk_breeds,
|
|
|
|
|
203 |
if top1_prob < 0.15:
|
204 |
initial_state = {
|
205 |
"explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
206 |
-
"buttons": [],
|
207 |
-
"show_back": False,
|
208 |
"image": None,
|
209 |
"is_multi_dog": False
|
210 |
}
|
211 |
-
return initial_state["explanation"], None,
|
212 |
|
213 |
breed = topk_breeds[0]
|
214 |
-
|
215 |
-
|
216 |
if top1_prob >= 0.45:
|
|
|
217 |
formatted_description = format_description(description, breed)
|
218 |
initial_state = {
|
219 |
"explanation": formatted_description,
|
220 |
-
"buttons": [],
|
221 |
-
"show_back": False,
|
222 |
"image": image,
|
223 |
"is_multi_dog": False
|
224 |
}
|
225 |
-
return formatted_description, image,
|
|
|
|
|
226 |
else:
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
f"
|
232 |
-
|
233 |
-
)
|
234 |
-
buttons = [
|
235 |
-
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
236 |
-
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
237 |
-
gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
238 |
-
]
|
239 |
initial_state = {
|
240 |
-
"explanation":
|
241 |
-
"buttons": buttons,
|
242 |
-
"show_back": True,
|
243 |
"image": image,
|
244 |
"is_multi_dog": False
|
245 |
}
|
246 |
-
return
|
247 |
-
|
248 |
|
249 |
async def predict(image):
|
250 |
if image is None:
|
251 |
-
return "Please upload an image to start.", None,
|
252 |
|
253 |
try:
|
254 |
if isinstance(image, np.ndarray):
|
255 |
image = Image.fromarray(image)
|
256 |
|
257 |
dogs = await detect_multiple_dogs(image)
|
258 |
-
|
259 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
260 |
-
buttons = []
|
261 |
annotated_image = image.copy()
|
262 |
draw = ImageDraw.Draw(annotated_image)
|
263 |
font = ImageFont.load_default()
|
@@ -265,89 +426,73 @@ async def predict(image):
|
|
265 |
dogs_info = ""
|
266 |
|
267 |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
268 |
-
buttons_html = ""
|
269 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
270 |
color = color_list[i % len(color_list)]
|
271 |
draw.rectangle(box, outline=color, width=3)
|
272 |
draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
273 |
|
|
|
274 |
combined_confidence = detection_confidence * top1_prob
|
|
|
275 |
dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
|
276 |
dogs_info += f'<h2>Dog {i+1}</h2>'
|
277 |
-
|
278 |
-
if
|
|
|
|
|
|
|
279 |
breed = topk_breeds[0]
|
280 |
description = get_dog_description(breed)
|
281 |
dogs_info += format_description_html(description, breed)
|
282 |
-
|
283 |
-
elif combined_confidence >= 0.15:
|
284 |
-
dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
|
285 |
-
for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
|
286 |
-
prob = float(prob.replace('%', ''))
|
287 |
-
dogs_info += f"<li><strong>{breed}</strong> ({prob:.2f}% confidence)</li>"
|
288 |
-
dogs_info += "</ul>"
|
289 |
-
|
290 |
-
for breed in topk_breeds[:3]:
|
291 |
-
button_id = f"Dog {i+1}: More about {breed}"
|
292 |
-
buttons_html += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
|
293 |
-
buttons.append(button_id)
|
294 |
-
|
295 |
else:
|
296 |
-
dogs_info += "<
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
buttons_html = ""
|
302 |
-
|
303 |
html_output = f"""
|
304 |
<style>
|
305 |
-
.dog-info {{
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
</style>
|
310 |
{dogs_info}
|
311 |
-
"""
|
312 |
-
|
313 |
-
if buttons:
|
314 |
-
html_output += """
|
315 |
-
<script>
|
316 |
-
function handle_button_click(button_id) {
|
317 |
-
const radio = document.querySelector('input[type=radio][value="' + button_id + '"]');
|
318 |
-
if (radio) {
|
319 |
-
radio.click();
|
320 |
-
} else {
|
321 |
-
console.error("Radio button not found:", button_id);
|
322 |
-
}
|
323 |
-
}
|
324 |
-
</script>
|
325 |
-
"""
|
326 |
-
initial_state = {
|
327 |
-
"dogs_info": dogs_info,
|
328 |
-
"buttons": buttons,
|
329 |
-
"show_back": True,
|
330 |
-
"image": annotated_image,
|
331 |
-
"is_multi_dog": len(dogs) > 1,
|
332 |
-
"html_output": html_output
|
333 |
-
}
|
334 |
-
return html_output, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
335 |
-
else:
|
336 |
-
initial_state = {
|
337 |
-
"dogs_info": dogs_info,
|
338 |
-
"buttons": [],
|
339 |
-
"show_back": False,
|
340 |
-
"image": annotated_image,
|
341 |
-
"is_multi_dog": len(dogs) > 1,
|
342 |
-
"html_output": html_output
|
343 |
-
}
|
344 |
-
return html_output, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
except Exception as e:
|
348 |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
349 |
print(error_msg)
|
350 |
-
return error_msg, None,
|
351 |
|
352 |
|
353 |
def show_details_html(choice, previous_output, initial_state):
|
@@ -402,47 +547,76 @@ def go_back(state):
|
|
402 |
)
|
403 |
|
404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
with gr.Blocks() as iface:
|
406 |
gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
407 |
-
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed
|
408 |
|
409 |
with gr.Row():
|
410 |
input_image = gr.Image(label="Upload a dog image", type="pil")
|
411 |
output_image = gr.Image(label="Annotated Image")
|
412 |
|
413 |
-
output = gr.HTML(label="Prediction Results")
|
414 |
-
|
415 |
-
breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
|
416 |
-
|
417 |
-
back_button = gr.Button("Back", visible=False)
|
418 |
-
|
419 |
initial_state = gr.State()
|
420 |
|
421 |
input_image.change(
|
422 |
predict,
|
423 |
inputs=input_image,
|
424 |
-
outputs=[output, output_image,
|
425 |
-
)
|
426 |
-
|
427 |
-
breed_buttons.change(
|
428 |
-
show_details_html,
|
429 |
-
inputs=[breed_buttons, output, initial_state],
|
430 |
-
outputs=[output, back_button, initial_state]
|
431 |
-
)
|
432 |
-
|
433 |
-
back_button.click(
|
434 |
-
go_back,
|
435 |
-
inputs=[initial_state],
|
436 |
-
outputs=[output, output_image, breed_buttons, back_button, initial_state]
|
437 |
)
|
438 |
|
439 |
gr.Examples(
|
440 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
441 |
inputs=input_image
|
442 |
)
|
443 |
-
|
444 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
445 |
|
446 |
-
|
447 |
if __name__ == "__main__":
|
448 |
iface.launch()
|
|
|
132 |
return f"{base_url}{breed_url}/"
|
133 |
|
134 |
|
135 |
+
# async def predict_single_dog(image):
|
136 |
+
# image_tensor = preprocess_image(image)
|
137 |
+
# with torch.no_grad():
|
138 |
+
# output = model(image_tensor)
|
139 |
+
# logits = output[0] if isinstance(output, tuple) else output
|
140 |
+
# probabilities = F.softmax(logits, dim=1)
|
141 |
+
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
142 |
+
# top1_prob = topk_probs[0][0].item()
|
143 |
+
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
144 |
+
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
145 |
+
# return top1_prob, topk_breeds, topk_probs_percent
|
146 |
+
|
147 |
|
148 |
async def predict_single_dog(image):
|
149 |
image_tensor = preprocess_image(image)
|
|
|
154 |
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
155 |
top1_prob = topk_probs[0][0].item()
|
156 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
157 |
+
|
158 |
+
# Calculate relative probabilities for display
|
159 |
+
raw_probs = [prob.item() for prob in topk_probs[0]]
|
160 |
+
sum_probs = sum(raw_probs)
|
161 |
+
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs]
|
162 |
+
|
163 |
+
return top1_prob, topk_breeds, relative_probs
|
164 |
|
165 |
|
166 |
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
|
|
215 |
|
216 |
|
217 |
|
218 |
+
# async def process_single_dog(image):
|
219 |
+
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
220 |
+
# if top1_prob < 0.15:
|
221 |
+
# initial_state = {
|
222 |
+
# "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
223 |
+
# "buttons": [],
|
224 |
+
# "show_back": False,
|
225 |
+
# "image": None,
|
226 |
+
# "is_multi_dog": False
|
227 |
+
# }
|
228 |
+
# return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
229 |
+
|
230 |
+
# breed = topk_breeds[0]
|
231 |
+
# description = get_dog_description(breed)
|
232 |
+
|
233 |
+
# if top1_prob >= 0.45:
|
234 |
+
# formatted_description = format_description(description, breed)
|
235 |
+
# initial_state = {
|
236 |
+
# "explanation": formatted_description,
|
237 |
+
# "buttons": [],
|
238 |
+
# "show_back": False,
|
239 |
+
# "image": image,
|
240 |
+
# "is_multi_dog": False
|
241 |
+
# }
|
242 |
+
# return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
243 |
+
# else:
|
244 |
+
# explanation = (
|
245 |
+
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
246 |
+
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
247 |
+
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
248 |
+
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
249 |
+
# "Click on a button to view more information about the breed."
|
250 |
+
# )
|
251 |
+
# buttons = [
|
252 |
+
# gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
253 |
+
# gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
254 |
+
# gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
255 |
+
# ]
|
256 |
+
# initial_state = {
|
257 |
+
# "explanation": explanation,
|
258 |
+
# "buttons": buttons,
|
259 |
+
# "show_back": True,
|
260 |
+
# "image": image,
|
261 |
+
# "is_multi_dog": False
|
262 |
+
# }
|
263 |
+
# return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
264 |
+
|
265 |
+
|
266 |
+
# async def predict(image):
|
267 |
+
# if image is None:
|
268 |
+
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
269 |
+
|
270 |
+
# try:
|
271 |
+
# if isinstance(image, np.ndarray):
|
272 |
+
# image = Image.fromarray(image)
|
273 |
+
|
274 |
+
# dogs = await detect_multiple_dogs(image)
|
275 |
+
|
276 |
+
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
277 |
+
# buttons = []
|
278 |
+
# annotated_image = image.copy()
|
279 |
+
# draw = ImageDraw.Draw(annotated_image)
|
280 |
+
# font = ImageFont.load_default()
|
281 |
+
|
282 |
+
# dogs_info = ""
|
283 |
+
|
284 |
+
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
285 |
+
# buttons_html = ""
|
286 |
+
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
287 |
+
# color = color_list[i % len(color_list)]
|
288 |
+
# draw.rectangle(box, outline=color, width=3)
|
289 |
+
# draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
290 |
+
|
291 |
+
# combined_confidence = detection_confidence * top1_prob
|
292 |
+
# dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
|
293 |
+
# dogs_info += f'<h2>Dog {i+1}</h2>'
|
294 |
+
|
295 |
+
# if top1_prob >= 0.45:
|
296 |
+
# breed = topk_breeds[0]
|
297 |
+
# description = get_dog_description(breed)
|
298 |
+
# dogs_info += format_description_html(description, breed)
|
299 |
+
|
300 |
+
# elif combined_confidence >= 0.15:
|
301 |
+
# dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
|
302 |
+
# for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
|
303 |
+
# prob = float(prob.replace('%', ''))
|
304 |
+
# dogs_info += f"<li><strong>{breed}</strong> ({prob:.2f}% confidence)</li>"
|
305 |
+
# dogs_info += "</ul>"
|
306 |
+
|
307 |
+
# for breed in topk_breeds[:3]:
|
308 |
+
# button_id = f"Dog {i+1}: More about {breed}"
|
309 |
+
# buttons_html += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
|
310 |
+
# buttons.append(button_id)
|
311 |
+
|
312 |
+
# else:
|
313 |
+
# dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
|
314 |
+
|
315 |
+
# dogs_info += '</div>'
|
316 |
+
|
317 |
+
|
318 |
+
# buttons_html = ""
|
319 |
+
|
320 |
+
# html_output = f"""
|
321 |
+
# <style>
|
322 |
+
# .dog-info {{ border: 1px solid #ddd; margin-bottom: 20px; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }}
|
323 |
+
# .dog-info h2 {{ background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0; }}
|
324 |
+
# .breed-buttons {{ margin-top: 10px; }}
|
325 |
+
# .breed-button {{ margin-right: 10px; margin-bottom: 10px; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 3px; cursor: pointer; }}
|
326 |
+
# </style>
|
327 |
+
# {dogs_info}
|
328 |
+
# """
|
329 |
+
|
330 |
+
# if buttons:
|
331 |
+
# html_output += """
|
332 |
+
# <script>
|
333 |
+
# function handle_button_click(button_id) {
|
334 |
+
# const radio = document.querySelector('input[type=radio][value="' + button_id + '"]');
|
335 |
+
# if (radio) {
|
336 |
+
# radio.click();
|
337 |
+
# } else {
|
338 |
+
# console.error("Radio button not found:", button_id);
|
339 |
+
# }
|
340 |
+
# }
|
341 |
+
# </script>
|
342 |
+
# """
|
343 |
+
# initial_state = {
|
344 |
+
# "dogs_info": dogs_info,
|
345 |
+
# "buttons": buttons,
|
346 |
+
# "show_back": True,
|
347 |
+
# "image": annotated_image,
|
348 |
+
# "is_multi_dog": len(dogs) > 1,
|
349 |
+
# "html_output": html_output
|
350 |
+
# }
|
351 |
+
# return html_output, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
352 |
+
# else:
|
353 |
+
# initial_state = {
|
354 |
+
# "dogs_info": dogs_info,
|
355 |
+
# "buttons": [],
|
356 |
+
# "show_back": False,
|
357 |
+
# "image": annotated_image,
|
358 |
+
# "is_multi_dog": len(dogs) > 1,
|
359 |
+
# "html_output": html_output
|
360 |
+
# }
|
361 |
+
# return html_output, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
362 |
+
|
363 |
+
|
364 |
+
# except Exception as e:
|
365 |
+
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
366 |
+
# print(error_msg)
|
367 |
+
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
async def process_single_dog(image):
|
372 |
+
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
|
373 |
+
|
374 |
+
# Case 1: Low confidence - unclear image or breed not in dataset
|
375 |
if top1_prob < 0.15:
|
376 |
initial_state = {
|
377 |
"explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
|
|
|
|
378 |
"image": None,
|
379 |
"is_multi_dog": False
|
380 |
}
|
381 |
+
return initial_state["explanation"], None, initial_state
|
382 |
|
383 |
breed = topk_breeds[0]
|
384 |
+
|
385 |
+
# Case 2: High confidence - single breed result
|
386 |
if top1_prob >= 0.45:
|
387 |
+
description = get_dog_description(breed)
|
388 |
formatted_description = format_description(description, breed)
|
389 |
initial_state = {
|
390 |
"explanation": formatted_description,
|
|
|
|
|
391 |
"image": image,
|
392 |
"is_multi_dog": False
|
393 |
}
|
394 |
+
return formatted_description, image, initial_state
|
395 |
+
|
396 |
+
# Case 3: Medium confidence - show top 3 breeds with relative probabilities
|
397 |
else:
|
398 |
+
breeds_info = ""
|
399 |
+
for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
|
400 |
+
description = get_dog_description(breed)
|
401 |
+
formatted_description = format_description(description, breed)
|
402 |
+
breeds_info += f"\n\nBreed {i+1}: **{breed}** (Confidence: {prob})\n{formatted_description}"
|
403 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
initial_state = {
|
405 |
+
"explanation": breeds_info,
|
|
|
|
|
406 |
"image": image,
|
407 |
"is_multi_dog": False
|
408 |
}
|
409 |
+
return breeds_info, image, initial_state
|
410 |
+
|
411 |
|
412 |
async def predict(image):
|
413 |
if image is None:
|
414 |
+
return "Please upload an image to start.", None, None
|
415 |
|
416 |
try:
|
417 |
if isinstance(image, np.ndarray):
|
418 |
image = Image.fromarray(image)
|
419 |
|
420 |
dogs = await detect_multiple_dogs(image)
|
|
|
421 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
|
|
422 |
annotated_image = image.copy()
|
423 |
draw = ImageDraw.Draw(annotated_image)
|
424 |
font = ImageFont.load_default()
|
|
|
426 |
dogs_info = ""
|
427 |
|
428 |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
|
|
|
|
429 |
color = color_list[i % len(color_list)]
|
430 |
draw.rectangle(box, outline=color, width=3)
|
431 |
draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
432 |
|
433 |
+
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
434 |
combined_confidence = detection_confidence * top1_prob
|
435 |
+
|
436 |
dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
|
437 |
dogs_info += f'<h2>Dog {i+1}</h2>'
|
438 |
+
|
439 |
+
if combined_confidence < 0.15:
|
440 |
+
dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
|
441 |
+
|
442 |
+
elif top1_prob >= 0.45:
|
443 |
breed = topk_breeds[0]
|
444 |
description = get_dog_description(breed)
|
445 |
dogs_info += format_description_html(description, breed)
|
446 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
else:
|
448 |
+
dogs_info += "<h3>Top 3 possible breeds:</h3>"
|
449 |
+
for breed, prob in zip(topk_breeds, relative_probs):
|
450 |
+
description = get_dog_description(breed)
|
451 |
+
dogs_info += f"<div class='breed-section'>"
|
452 |
+
dogs_info += f"<h4>{breed} (Confidence: {prob})</h4>"
|
453 |
+
dogs_info += format_description_html(description, breed)
|
454 |
+
dogs_info += "</div>"
|
455 |
+
|
456 |
+
dogs_info += '</div>'
|
457 |
|
|
|
|
|
|
|
458 |
html_output = f"""
|
459 |
<style>
|
460 |
+
.dog-info {{
|
461 |
+
border: 1px solid #ddd;
|
462 |
+
margin-bottom: 20px;
|
463 |
+
padding: 15px;
|
464 |
+
border-radius: 5px;
|
465 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
466 |
+
}}
|
467 |
+
.dog-info h2 {{
|
468 |
+
background-color: #f0f0f0;
|
469 |
+
padding: 10px;
|
470 |
+
margin: -15px -15px 15px -15px;
|
471 |
+
border-radius: 5px 5px 0 0;
|
472 |
+
}}
|
473 |
+
.breed-section {{
|
474 |
+
margin-bottom: 20px;
|
475 |
+
padding: 10px;
|
476 |
+
background-color: #f8f8f8;
|
477 |
+
border-radius: 5px;
|
478 |
+
}}
|
479 |
</style>
|
480 |
{dogs_info}
|
481 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
|
483 |
+
initial_state = {
|
484 |
+
"dogs_info": dogs_info,
|
485 |
+
"image": annotated_image,
|
486 |
+
"is_multi_dog": len(dogs) > 1,
|
487 |
+
"html_output": html_output
|
488 |
+
}
|
489 |
+
|
490 |
+
return html_output, annotated_image, initial_state
|
491 |
|
492 |
except Exception as e:
|
493 |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
494 |
print(error_msg)
|
495 |
+
return error_msg, None, None
|
496 |
|
497 |
|
498 |
def show_details_html(choice, previous_output, initial_state):
|
|
|
547 |
)
|
548 |
|
549 |
|
550 |
+
# with gr.Blocks() as iface:
|
551 |
+
# gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
552 |
+
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
553 |
+
|
554 |
+
# with gr.Row():
|
555 |
+
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
556 |
+
# output_image = gr.Image(label="Annotated Image")
|
557 |
+
|
558 |
+
# output = gr.HTML(label="Prediction Results")
|
559 |
+
|
560 |
+
# breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
|
561 |
+
|
562 |
+
# back_button = gr.Button("Back", visible=False)
|
563 |
+
|
564 |
+
# initial_state = gr.State()
|
565 |
+
|
566 |
+
# input_image.change(
|
567 |
+
# predict,
|
568 |
+
# inputs=input_image,
|
569 |
+
# outputs=[output, output_image, breed_buttons, initial_state]
|
570 |
+
# )
|
571 |
+
|
572 |
+
# breed_buttons.change(
|
573 |
+
# show_details_html,
|
574 |
+
# inputs=[breed_buttons, output, initial_state],
|
575 |
+
# outputs=[output, back_button, initial_state]
|
576 |
+
# )
|
577 |
+
|
578 |
+
# back_button.click(
|
579 |
+
# go_back,
|
580 |
+
# inputs=[initial_state],
|
581 |
+
# outputs=[output, output_image, breed_buttons, back_button, initial_state]
|
582 |
+
# )
|
583 |
+
|
584 |
+
# gr.Examples(
|
585 |
+
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
586 |
+
# inputs=input_image
|
587 |
+
# )
|
588 |
+
|
589 |
+
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
590 |
+
|
591 |
+
|
592 |
+
# if __name__ == "__main__":
|
593 |
+
# iface.launch()
|
594 |
+
|
595 |
+
|
596 |
+
|
597 |
with gr.Blocks() as iface:
|
598 |
gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
599 |
+
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed and provide detailed information!</p>")
|
600 |
|
601 |
with gr.Row():
|
602 |
input_image = gr.Image(label="Upload a dog image", type="pil")
|
603 |
output_image = gr.Image(label="Annotated Image")
|
604 |
|
605 |
+
output = gr.HTML(label="Prediction Results")
|
|
|
|
|
|
|
|
|
|
|
606 |
initial_state = gr.State()
|
607 |
|
608 |
input_image.change(
|
609 |
predict,
|
610 |
inputs=input_image,
|
611 |
+
outputs=[output, output_image, initial_state]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
)
|
613 |
|
614 |
gr.Examples(
|
615 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
616 |
inputs=input_image
|
617 |
)
|
618 |
+
|
619 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
620 |
|
|
|
621 |
if __name__ == "__main__":
|
622 |
iface.launch()
|