Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +168 -399
scoring_calculation_system.py
CHANGED
@@ -1292,330 +1292,7 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1292 |
adaptability_score += 0.05
|
1293 |
|
1294 |
return min(0.2, adaptability_score)
|
1295 |
-
|
1296 |
-
|
1297 |
-
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1298 |
-
# """
|
1299 |
-
# 1. 運動類型與時間的精確匹配
|
1300 |
-
# 2. 進階使用者的專業需求
|
1301 |
-
# 3. 空間利用的實際效果
|
1302 |
-
# 4. 條件組合的嚴格評估
|
1303 |
-
# """
|
1304 |
-
# def evaluate_perfect_conditions():
|
1305 |
-
# """評估條件匹配度,特別強化運動類型與專業程度的評估"""
|
1306 |
-
# perfect_matches = {
|
1307 |
-
# 'size_match': 0,
|
1308 |
-
# 'exercise_match': 0,
|
1309 |
-
# 'experience_match': 0,
|
1310 |
-
# 'living_condition_match': 0
|
1311 |
-
# }
|
1312 |
-
|
1313 |
-
# # 運動類型與需求的精確匹配
|
1314 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1315 |
-
# exercise_time = user_prefs.exercise_time
|
1316 |
-
# exercise_type = user_prefs.exercise_type
|
1317 |
-
|
1318 |
-
# # 定義品種的理想運動模式
|
1319 |
-
# breed_exercise_preferences = {
|
1320 |
-
# 'VERY HIGH': {
|
1321 |
-
# 'ideal_type': 'active_training',
|
1322 |
-
# 'acceptable_types': ['moderate_activity'],
|
1323 |
-
# 'time_ranges': {
|
1324 |
-
# 'ideal': (120, 180),
|
1325 |
-
# 'acceptable': (90, 200)
|
1326 |
-
# }
|
1327 |
-
# },
|
1328 |
-
# 'HIGH': {
|
1329 |
-
# 'ideal_type': 'moderate_activity',
|
1330 |
-
# 'acceptable_types': ['active_training', 'light_walks'],
|
1331 |
-
# 'time_ranges': {
|
1332 |
-
# 'ideal': (90, 150),
|
1333 |
-
# 'acceptable': (60, 180)
|
1334 |
-
# }
|
1335 |
-
# },
|
1336 |
-
# 'MODERATE': {
|
1337 |
-
# 'ideal_type': 'moderate_activity',
|
1338 |
-
# 'acceptable_types': ['light_walks', 'active_training'],
|
1339 |
-
# 'time_ranges': {
|
1340 |
-
# 'ideal': (45, 90),
|
1341 |
-
# 'acceptable': (30, 120)
|
1342 |
-
# }
|
1343 |
-
# },
|
1344 |
-
# 'LOW': {
|
1345 |
-
# 'ideal_type': 'light_walks',
|
1346 |
-
# 'acceptable_types': ['moderate_activity'],
|
1347 |
-
# 'time_ranges': {
|
1348 |
-
# 'ideal': (30, 60),
|
1349 |
-
# 'acceptable': (15, 90)
|
1350 |
-
# }
|
1351 |
-
# }
|
1352 |
-
# }
|
1353 |
-
|
1354 |
-
# # 計算運動匹配度
|
1355 |
-
# exercise_profile = breed_exercise_preferences.get(exercise_needs,
|
1356 |
-
# breed_exercise_preferences['MODERATE'])
|
1357 |
-
|
1358 |
-
# # 時間匹配度計算
|
1359 |
-
# time_ranges = exercise_profile['time_ranges']
|
1360 |
-
# if time_ranges['ideal'][0] <= exercise_time <= time_ranges['ideal'][1]:
|
1361 |
-
# time_score = 1.0
|
1362 |
-
# elif time_ranges['acceptable'][0] <= exercise_time <= time_ranges['acceptable'][1]:
|
1363 |
-
# # 計算與理想範圍的距離
|
1364 |
-
# if exercise_time < time_ranges['ideal'][0]:
|
1365 |
-
# deviation = (time_ranges['ideal'][0] - exercise_time) / time_ranges['ideal'][0]
|
1366 |
-
# else:
|
1367 |
-
# deviation = (exercise_time - time_ranges['ideal'][1]) / time_ranges['ideal'][1]
|
1368 |
-
# time_score = max(0.4, 1 - (deviation * 0.6))
|
1369 |
-
# else:
|
1370 |
-
# time_score = 0.3
|
1371 |
-
|
1372 |
-
# # 運動類型匹配度計算
|
1373 |
-
# if exercise_type == exercise_profile['ideal_type']:
|
1374 |
-
# type_score = 1.0
|
1375 |
-
# elif exercise_type in exercise_profile['acceptable_types']:
|
1376 |
-
# type_score = 0.7
|
1377 |
-
# else:
|
1378 |
-
# type_score = 0.4
|
1379 |
-
|
1380 |
-
# # 若運動時間過長但強度不足,額外降低分數
|
1381 |
-
# if exercise_time > time_ranges['acceptable'][1] and exercise_type != exercise_profile['ideal_type']:
|
1382 |
-
# type_score *= 0.7
|
1383 |
-
|
1384 |
-
# perfect_matches['exercise_match'] = (time_score * 0.6) + (type_score * 0.4)
|
1385 |
-
|
1386 |
-
# # 體型與空間的實際利用評估
|
1387 |
-
# space_utilization = {
|
1388 |
-
# 'apartment': {
|
1389 |
-
# 'Small': 1.0,
|
1390 |
-
# 'Medium': 0.4,
|
1391 |
-
# 'Large': 0.2,
|
1392 |
-
# 'Giant': 0.1
|
1393 |
-
# },
|
1394 |
-
# 'house_small': {
|
1395 |
-
# 'Small': 0.9,
|
1396 |
-
# 'Medium': 1.0,
|
1397 |
-
# 'Large': 0.5,
|
1398 |
-
# 'Giant': 0.3
|
1399 |
-
# },
|
1400 |
-
# 'house_large': {
|
1401 |
-
# 'Small': 0.7,
|
1402 |
-
# 'Medium': 0.9,
|
1403 |
-
# 'Large': 1.0,
|
1404 |
-
# 'Giant': 0.95
|
1405 |
-
# }
|
1406 |
-
# }
|
1407 |
-
|
1408 |
-
# # 增加活動空間需求評估
|
1409 |
-
# space_needs = 'high' if exercise_needs in ['VERY HIGH', 'HIGH'] else 'moderate'
|
1410 |
-
# if space_needs == 'high' and user_prefs.living_space != 'house_large':
|
1411 |
-
# space_score = space_utilization[user_prefs.living_space][breed_info['Size']] * 0.8
|
1412 |
-
# else:
|
1413 |
-
# space_score = space_utilization.get(user_prefs.living_space,
|
1414 |
-
# space_utilization['house_small'])[breed_info['Size']]
|
1415 |
-
|
1416 |
-
# perfect_matches['size_match'] = space_score
|
1417 |
-
|
1418 |
-
# # 經驗需求的專業評估
|
1419 |
-
# care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1420 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
1421 |
-
|
1422 |
-
# # 定義進階特徵
|
1423 |
-
# advanced_traits = ['working', 'independent', 'dominant', 'protective']
|
1424 |
-
# advanced_trait_count = sum(1 for trait in advanced_traits if trait in temperament)
|
1425 |
-
|
1426 |
-
# # 經驗匹配度計算
|
1427 |
-
# experience_matrix = {
|
1428 |
-
# 'HIGH': {
|
1429 |
-
# 'beginner': 0.2, # 更嚴格的新手限制
|
1430 |
-
# 'intermediate': 0.6,
|
1431 |
-
# 'advanced': 1.0
|
1432 |
-
# },
|
1433 |
-
# 'MODERATE': {
|
1434 |
-
# 'beginner': 0.5,
|
1435 |
-
# 'intermediate': 0.9,
|
1436 |
-
# 'advanced': 0.95
|
1437 |
-
# },
|
1438 |
-
# 'LOW': {
|
1439 |
-
# 'beginner': 0.9,
|
1440 |
-
# 'intermediate': 0.85,
|
1441 |
-
# 'advanced': 0.8 # 對專家稍微降低簡單品種的分數
|
1442 |
-
# }
|
1443 |
-
# }
|
1444 |
-
|
1445 |
-
# experience_score = experience_matrix[care_level][user_prefs.experience_level]
|
1446 |
-
|
1447 |
-
# # 根據進階特徵調整分數
|
1448 |
-
# if advanced_trait_count > 0:
|
1449 |
-
# if user_prefs.experience_level == 'beginner':
|
1450 |
-
# experience_score *= (0.8 ** advanced_trait_count)
|
1451 |
-
# elif user_prefs.experience_level == 'advanced':
|
1452 |
-
# experience_score *= (1.1 ** min(advanced_trait_count, 2))
|
1453 |
-
|
1454 |
-
# perfect_matches['experience_match'] = experience_score
|
1455 |
-
|
1456 |
-
# # 生活條件整體評估
|
1457 |
-
# living_score = 1.0
|
1458 |
-
|
1459 |
-
# # 院子影響的嚴格評估
|
1460 |
-
# if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1461 |
-
# yard_impacts = {
|
1462 |
-
# 'no_yard': 0.5, # 更嚴格的懲罰
|
1463 |
-
# 'shared_yard': 0.7,
|
1464 |
-
# 'private_yard': 1.0
|
1465 |
-
# }
|
1466 |
-
# living_score *= yard_impacts.get(user_prefs.yard_access, 0.7)
|
1467 |
-
|
1468 |
-
# # 時間可用性評估
|
1469 |
-
# time_impacts = {
|
1470 |
-
# 'limited': 0.6, # 更嚴格的時間限制影響
|
1471 |
-
# 'moderate': 0.8,
|
1472 |
-
# 'flexible': 1.0
|
1473 |
-
# }
|
1474 |
-
# living_score *= time_impacts.get(user_prefs.time_availability, 0.8)
|
1475 |
-
|
1476 |
-
# perfect_matches['living_condition_match'] = living_score
|
1477 |
-
|
1478 |
-
# return perfect_matches
|
1479 |
-
|
1480 |
-
# def calculate_weights():
|
1481 |
-
# """計算動態權重,強化條件極端情況的影響"""
|
1482 |
-
# base_weights = {
|
1483 |
-
# 'space': 0.20,
|
1484 |
-
# 'exercise': 0.20,
|
1485 |
-
# 'experience': 0.20,
|
1486 |
-
# 'grooming': 0.15,
|
1487 |
-
# 'noise': 0.15,
|
1488 |
-
# 'health': 0.10
|
1489 |
-
# }
|
1490 |
-
|
1491 |
-
# # 計算條件極端度
|
1492 |
-
# def calculate_condition_extremity():
|
1493 |
-
# extremities = {}
|
1494 |
-
|
1495 |
-
# # 運動時間極端度評估
|
1496 |
-
# if user_prefs.exercise_time < 30:
|
1497 |
-
# extremities['exercise'] = ('very_low', 0.9)
|
1498 |
-
# elif user_prefs.exercise_time < 60:
|
1499 |
-
# extremities['exercise'] = ('low', 0.7)
|
1500 |
-
# elif user_prefs.exercise_time > 150:
|
1501 |
-
# extremities['exercise'] = ('very_high', 0.9)
|
1502 |
-
# elif user_prefs.exercise_time > 120:
|
1503 |
-
# extremities['exercise'] = ('high', 0.7)
|
1504 |
-
# else:
|
1505 |
-
# extremities['exercise'] = ('moderate', 0.3)
|
1506 |
-
|
1507 |
-
# # 空間限制極端度評估
|
1508 |
-
# if user_prefs.living_space == 'apartment':
|
1509 |
-
# extremities['space'] = ('very_restricted', 0.9)
|
1510 |
-
# elif user_prefs.living_space == 'house_small':
|
1511 |
-
# extremities['space'] = ('restricted', 0.6)
|
1512 |
-
# else:
|
1513 |
-
# extremities['space'] = ('spacious', 0.3)
|
1514 |
-
|
1515 |
-
# return extremities
|
1516 |
-
|
1517 |
-
# extremities = calculate_condition_extremity()
|
1518 |
-
|
1519 |
-
# # 權重調整
|
1520 |
-
# weight_adjustments = {}
|
1521 |
-
|
1522 |
-
# # 空間權重調整
|
1523 |
-
# if extremities['space'][0] == 'very_restricted':
|
1524 |
-
# weight_adjustments['space'] = 3.0
|
1525 |
-
# weight_adjustments['noise'] = 2.5
|
1526 |
-
# elif extremities['space'][0] == 'restricted':
|
1527 |
-
# weight_adjustments['space'] = 2.0
|
1528 |
-
# weight_adjustments['noise'] = 1.8
|
1529 |
-
# elif extremities['space'][0] == 'spacious':
|
1530 |
-
# weight_adjustments['space'] = 0.7 # 大空間時降低空間權重
|
1531 |
-
# weight_adjustments['exercise'] = 1.5 # 提升運動重要性
|
1532 |
-
|
1533 |
-
# # 運動需求權重調整
|
1534 |
-
# if extremities['exercise'][0] in ['very_low', 'very_high']:
|
1535 |
-
# weight_adjustments['exercise'] = 3.0
|
1536 |
-
# elif extremities['exercise'][0] in ['low', 'high']:
|
1537 |
-
# weight_adjustments['exercise'] = 2.0
|
1538 |
-
|
1539 |
-
# # 經驗需求權重調整
|
1540 |
-
# if user_prefs.experience_level == 'beginner':
|
1541 |
-
# weight_adjustments['experience'] = 2.5
|
1542 |
-
# elif user_prefs.experience_level == 'advanced':
|
1543 |
-
# weight_adjustments['experience'] = 2.0
|
1544 |
-
|
1545 |
-
# # 應用權重調整
|
1546 |
-
# final_weights = base_weights.copy()
|
1547 |
-
# for key, adjustment in weight_adjustments.items():
|
1548 |
-
# final_weights[key] *= adjustment
|
1549 |
-
|
1550 |
-
# return final_weights
|
1551 |
-
|
1552 |
-
# def apply_special_case_adjustments(score):
|
1553 |
-
# """處理特殊情況,更嚴格的條件組合評估"""
|
1554 |
-
# severity = 1.0
|
1555 |
-
|
1556 |
-
# # 空間與運動組合的嚴格評估
|
1557 |
-
# if user_prefs.living_space == 'apartment':
|
1558 |
-
# if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
|
1559 |
-
# severity *= 0.5 # 更嚴重的懲罰
|
1560 |
-
# elif breed_info.get('Exercise Needs') == 'HIGH':
|
1561 |
-
# severity *= 0.6
|
1562 |
-
# if breed_info['Size'] in ['Large', 'Giant']:
|
1563 |
-
# severity *= 0.5
|
1564 |
-
|
1565 |
-
# # 經驗與品種難度組合的嚴格評估
|
1566 |
-
# if user_prefs.experience_level == 'beginner':
|
1567 |
-
# if breed_info.get('Care Level') == 'HIGH':
|
1568 |
-
# if user_prefs.has_children:
|
1569 |
-
# severity *= 0.5
|
1570 |
-
# else:
|
1571 |
-
# severity *= 0.6
|
1572 |
-
|
1573 |
-
# # 時間限制與需求組合的嚴格評估
|
1574 |
-
# if user_prefs.time_availability == 'limited':
|
1575 |
-
# if breed_info.get('Exercise Needs').upper() in ['VERY HIGH', 'HIGH']:
|
1576 |
-
# severity *= 0.6
|
1577 |
-
|
1578 |
-
# # 運動類型不匹配的懲罰
|
1579 |
-
# if user_prefs.exercise_time > 120:
|
1580 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1581 |
-
# if exercise_needs == 'LOW':
|
1582 |
-
# severity *= 0.7
|
1583 |
-
# elif exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
|
1584 |
-
# severity *= 0.6
|
1585 |
-
|
1586 |
-
# return score * severity
|
1587 |
-
|
1588 |
-
# # 評估完美匹配條件
|
1589 |
-
# perfect_conditions = evaluate_perfect_conditions()
|
1590 |
-
|
1591 |
-
# # 計算動態權重
|
1592 |
-
# weights = calculate_weights()
|
1593 |
-
|
1594 |
-
# # 正規化權重
|
1595 |
-
# total_weight = sum(weights.values())
|
1596 |
-
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1597 |
|
1598 |
-
# # 計算基礎分數
|
1599 |
-
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1600 |
-
|
1601 |
-
# # 完美匹配獎勵計算(降低獎勵影響)
|
1602 |
-
# perfect_bonus = 1.0
|
1603 |
-
# perfect_bonus += 0.12 * perfect_conditions['size_match']
|
1604 |
-
# perfect_bonus += 0.12 * perfect_conditions['exercise_match']
|
1605 |
-
# perfect_bonus += 0.12 * perfect_conditions['experience_match']
|
1606 |
-
# perfect_bonus += 0.04 * perfect_conditions['living_condition_match']
|
1607 |
-
|
1608 |
-
# # 品種特性加成
|
1609 |
-
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1610 |
-
|
1611 |
-
# # 計算最終分數
|
1612 |
-
# final_score = (base_score * 0.85 + breed_bonus * 0.15) * perfect_bonus
|
1613 |
-
|
1614 |
-
# # 應用特殊情況調整
|
1615 |
-
# final_score = apply_special_case_adjustments(final_score)
|
1616 |
-
|
1617 |
-
# return min(1.0, final_score)
|
1618 |
-
|
1619 |
|
1620 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1621 |
"""
|
@@ -2136,33 +1813,93 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
2136 |
|
2137 |
return multiplier
|
2138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2139 |
def evaluate_breed_specific_requirements():
|
2140 |
-
"""
|
|
|
|
|
|
|
|
|
2141 |
multiplier = 1.0
|
2142 |
exercise_time = user_prefs.exercise_time
|
2143 |
exercise_type = user_prefs.exercise_type
|
2144 |
|
2145 |
-
#
|
2146 |
temperament = breed_info.get('Temperament', '').lower()
|
2147 |
description = breed_info.get('Description', '').lower()
|
2148 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2149 |
|
2150 |
-
# 加強運動需求的匹配判斷
|
2151 |
-
if exercise_needs == 'LOW':
|
2152 |
-
if exercise_time > 90: # 如果用戶運動時間過長
|
2153 |
-
multiplier *= 0.5 # 給予更強的懲罰
|
2154 |
-
elif exercise_needs == 'VERY HIGH':
|
2155 |
-
if exercise_time < 60: # 如果用戶運動時間過短
|
2156 |
-
multiplier *= 0.5
|
2157 |
-
|
2158 |
-
if 'sprint' in temperament:
|
2159 |
-
if exercise_time > 120 and exercise_type != 'active_training':
|
2160 |
-
multiplier *= 0.7
|
2161 |
-
|
2162 |
-
if any(trait in temperament for trait in ['working', 'herding']):
|
2163 |
-
if exercise_time < 90 or exercise_type == 'light_walks':
|
2164 |
-
multiplier *= 0.7
|
2165 |
-
|
2166 |
return multiplier
|
2167 |
|
2168 |
def evaluate_environmental_impact():
|
@@ -2192,40 +1929,76 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
2192 |
final_score = score * severity_multiplier
|
2193 |
return max(0.2, min(1.0, final_score))
|
2194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2195 |
def calculate_base_score(scores: dict, weights: dict) -> float:
|
2196 |
"""
|
2197 |
-
|
2198 |
"""
|
2199 |
-
#
|
2200 |
critical_thresholds = {
|
2201 |
-
|
2202 |
-
|
2203 |
-
|
2204 |
-
|
2205 |
}
|
2206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2207 |
critical_failures = []
|
2208 |
for metric, threshold in critical_thresholds.items():
|
2209 |
if scores[metric] < threshold:
|
2210 |
critical_failures.append((metric, scores[metric]))
|
2211 |
|
2212 |
-
base_score = sum(scores[k] * weights[k] for k in scores.keys())
|
2213 |
-
|
2214 |
if critical_failures:
|
2215 |
-
|
2216 |
-
|
2217 |
-
|
2218 |
-
for metric, score in critical_failures:
|
2219 |
-
if metric in ['space', 'exercise']:
|
2220 |
-
space_exercise_penalty += (critical_thresholds[metric] - score) * 0.15 # 降低懲罰
|
2221 |
-
else:
|
2222 |
-
other_penalty += (critical_thresholds[metric] - score) * 0.3
|
2223 |
-
|
2224 |
-
total_penalty = (space_exercise_penalty + other_penalty) / 2
|
2225 |
-
base_score *= (1 - total_penalty)
|
2226 |
|
2227 |
if len(critical_failures) > 1:
|
2228 |
-
base_score *= (0.98 ** (len(critical_failures) - 1))
|
2229 |
|
2230 |
return base_score
|
2231 |
|
@@ -2329,75 +2102,71 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
2329 |
|
2330 |
|
2331 |
def amplify_score_extreme(score: float) -> float:
|
2332 |
-
"""
|
|
|
|
|
|
|
|
|
2333 |
def smooth_curve(x: float, steepness: float = 12) -> float:
|
2334 |
import math
|
2335 |
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
2337 |
if score >= 0.9:
|
2338 |
-
|
2339 |
-
|
|
|
2340 |
|
2341 |
elif score >= 0.8:
|
2342 |
-
|
2343 |
-
|
|
|
2344 |
|
2345 |
elif score >= 0.7:
|
2346 |
-
|
2347 |
-
|
|
|
2348 |
|
2349 |
elif score >= 0.5:
|
|
|
2350 |
position = (score - 0.5) / 0.2
|
2351 |
-
|
|
|
2352 |
|
2353 |
else:
|
|
|
2354 |
position = score / 0.5
|
2355 |
-
|
2356 |
-
|
|
|
2357 |
|
2358 |
# def amplify_score_extreme(score: float) -> float:
|
2359 |
-
# """
|
2360 |
-
# - 完美匹配可達到95-99%
|
2361 |
-
# - 優秀匹配在90-95%
|
2362 |
-
# - 良好匹配在85-90%
|
2363 |
-
# - 一般匹配在75-85%
|
2364 |
-
# - 較差匹配在65-75%
|
2365 |
-
# - 極差匹配在50-65%
|
2366 |
-
# """
|
2367 |
# def smooth_curve(x: float, steepness: float = 12) -> float:
|
2368 |
-
# """使用sigmoid curve"""
|
2369 |
# import math
|
2370 |
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2371 |
|
2372 |
# if score >= 0.9:
|
2373 |
-
# # 完美匹配:95-99%
|
2374 |
# position = (score - 0.9) / 0.1
|
2375 |
-
# return 0.
|
2376 |
|
2377 |
# elif score >= 0.8:
|
2378 |
-
# # 優秀匹配:90-95%
|
2379 |
# position = (score - 0.8) / 0.1
|
2380 |
-
# return 0.90 + (position * 0.
|
2381 |
|
2382 |
# elif score >= 0.7:
|
2383 |
-
# # 良好匹配:85-90%
|
2384 |
# position = (score - 0.7) / 0.1
|
2385 |
-
# return 0.
|
2386 |
|
2387 |
# elif score >= 0.5:
|
2388 |
-
# # 一般匹配:75-85%
|
2389 |
# position = (score - 0.5) / 0.2
|
2390 |
-
#
|
2391 |
-
# return base + (smooth_curve(position) * 0.10)
|
2392 |
-
|
2393 |
-
# elif score >= 0.3:
|
2394 |
-
# # 較差匹配:65-75%
|
2395 |
-
# position = (score - 0.3) / 0.2
|
2396 |
-
# base = 0.65
|
2397 |
-
# return base + (smooth_curve(position) * 0.10)
|
2398 |
|
2399 |
# else:
|
2400 |
-
#
|
2401 |
-
#
|
2402 |
-
# base = 0.50
|
2403 |
-
# return base + (smooth_curve(position) * 0.15)
|
|
|
1292 |
adaptability_score += 0.05
|
1293 |
|
1294 |
return min(0.2, adaptability_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1296 |
|
1297 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1298 |
"""
|
|
|
1813 |
|
1814 |
return multiplier
|
1815 |
|
1816 |
+
# def evaluate_breed_specific_requirements():
|
1817 |
+
# """評估品種特定的要求,加強運動需求的判斷"""
|
1818 |
+
# multiplier = 1.0
|
1819 |
+
# exercise_time = user_prefs.exercise_time
|
1820 |
+
# exercise_type = user_prefs.exercise_type
|
1821 |
+
|
1822 |
+
# # 檢查品種的基本特性
|
1823 |
+
# temperament = breed_info.get('Temperament', '').lower()
|
1824 |
+
# description = breed_info.get('Description', '').lower()
|
1825 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1826 |
+
|
1827 |
+
# # 加強運動需求的匹配判斷
|
1828 |
+
# if exercise_needs == 'LOW':
|
1829 |
+
# if exercise_time > 90: # 如果用戶運動時間過長
|
1830 |
+
# multiplier *= 0.5 # 給予更強的懲罰
|
1831 |
+
# elif exercise_needs == 'VERY HIGH':
|
1832 |
+
# if exercise_time < 60: # 如果用戶運動時間過短
|
1833 |
+
# multiplier *= 0.5
|
1834 |
+
|
1835 |
+
# if 'sprint' in temperament:
|
1836 |
+
# if exercise_time > 120 and exercise_type != 'active_training':
|
1837 |
+
# multiplier *= 0.7
|
1838 |
+
|
1839 |
+
# if any(trait in temperament for trait in ['working', 'herding']):
|
1840 |
+
# if exercise_time < 90 or exercise_type == 'light_walks':
|
1841 |
+
# multiplier *= 0.7
|
1842 |
+
|
1843 |
+
# return multiplier
|
1844 |
+
|
1845 |
def evaluate_breed_specific_requirements():
|
1846 |
+
"""
|
1847 |
+
1. 嚴格的運動需求匹配
|
1848 |
+
2. 細緻的品種特性評估
|
1849 |
+
3. 強化經驗要求的判斷
|
1850 |
+
"""
|
1851 |
multiplier = 1.0
|
1852 |
exercise_time = user_prefs.exercise_time
|
1853 |
exercise_type = user_prefs.exercise_type
|
1854 |
|
1855 |
+
# 獲取品種的關鍵特性
|
1856 |
temperament = breed_info.get('Temperament', '').lower()
|
1857 |
description = breed_info.get('Description', '').lower()
|
1858 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1859 |
+
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1860 |
+
|
1861 |
+
# 運動需求匹配評估
|
1862 |
+
exercise_mismatch = {
|
1863 |
+
'VERY HIGH': {
|
1864 |
+
'min_time': 60,
|
1865 |
+
'penalty_rate': 0.4 if exercise_time < 60 else 0.0
|
1866 |
+
},
|
1867 |
+
'HIGH': {
|
1868 |
+
'min_time': 45,
|
1869 |
+
'penalty_rate': 0.35 if exercise_time < 45 else 0.0
|
1870 |
+
},
|
1871 |
+
'LOW': {
|
1872 |
+
'max_time': 90,
|
1873 |
+
'penalty_rate': 0.4 if exercise_time > 90 else 0.0
|
1874 |
+
}
|
1875 |
+
}
|
1876 |
+
|
1877 |
+
if exercise_needs in exercise_mismatch:
|
1878 |
+
match_info = exercise_mismatch[exercise_needs]
|
1879 |
+
if 'min_time' in match_info and exercise_time < match_info['min_time']:
|
1880 |
+
multiplier *= (1 - match_info['penalty_rate'])
|
1881 |
+
elif 'max_time' in match_info and exercise_time > match_info['max_time']:
|
1882 |
+
multiplier *= (1 - match_info['penalty_rate'])
|
1883 |
+
|
1884 |
+
# 品種特性專門評估
|
1885 |
+
breed_traits = {
|
1886 |
+
'working_dog': ['working', 'herding', 'intelligent', 'active'],
|
1887 |
+
'family_dog': ['gentle', 'friendly', 'good with children', 'patient'],
|
1888 |
+
'guard_dog': ['protective', 'territorial', 'alert', 'watchdog']
|
1889 |
+
}
|
1890 |
+
|
1891 |
+
# 根據用戶條件評估特殊特性
|
1892 |
+
for trait_type, traits in breed_traits.items():
|
1893 |
+
if any(trait in temperament for trait in traits):
|
1894 |
+
if trait_type == 'working_dog':
|
1895 |
+
if user_prefs.experience_level == 'beginner':
|
1896 |
+
multiplier *= 0.7
|
1897 |
+
if exercise_time < 90:
|
1898 |
+
multiplier *= 0.75
|
1899 |
+
elif trait_type == 'guard_dog':
|
1900 |
+
if user_prefs.has_children and user_prefs.experience_level != 'advanced':
|
1901 |
+
multiplier *= 0.8
|
1902 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1903 |
return multiplier
|
1904 |
|
1905 |
def evaluate_environmental_impact():
|
|
|
1929 |
final_score = score * severity_multiplier
|
1930 |
return max(0.2, min(1.0, final_score))
|
1931 |
|
1932 |
+
# def calculate_base_score(scores: dict, weights: dict) -> float:
|
1933 |
+
# """
|
1934 |
+
# 計算基礎分數,更寬容地處理極端組合
|
1935 |
+
# """
|
1936 |
+
# # 進一步降低關鍵指標閾值,使系統更包容極端組合
|
1937 |
+
# critical_thresholds = {
|
1938 |
+
# 'space': 0.45, # 進一步降低閾值
|
1939 |
+
# 'exercise': 0.45,
|
1940 |
+
# 'experience': 0.55,
|
1941 |
+
# 'noise': 0.55
|
1942 |
+
# }
|
1943 |
+
|
1944 |
+
# critical_failures = []
|
1945 |
+
# for metric, threshold in critical_thresholds.items():
|
1946 |
+
# if scores[metric] < threshold:
|
1947 |
+
# critical_failures.append((metric, scores[metric]))
|
1948 |
+
|
1949 |
+
# base_score = sum(scores[k] * weights[k] for k in scores.keys())
|
1950 |
+
|
1951 |
+
# if critical_failures:
|
1952 |
+
# space_exercise_penalty = 0
|
1953 |
+
# other_penalty = 0
|
1954 |
+
|
1955 |
+
# for metric, score in critical_failures:
|
1956 |
+
# if metric in ['space', 'exercise']:
|
1957 |
+
# space_exercise_penalty += (critical_thresholds[metric] - score) * 0.15 # 降低懲罰
|
1958 |
+
# else:
|
1959 |
+
# other_penalty += (critical_thresholds[metric] - score) * 0.3
|
1960 |
+
|
1961 |
+
# total_penalty = (space_exercise_penalty + other_penalty) / 2
|
1962 |
+
# base_score *= (1 - total_penalty)
|
1963 |
+
|
1964 |
+
# if len(critical_failures) > 1:
|
1965 |
+
# base_score *= (0.98 ** (len(critical_failures) - 1)) # 進一步降低多重失敗懲罰
|
1966 |
+
|
1967 |
+
# return base_score
|
1968 |
+
|
1969 |
def calculate_base_score(scores: dict, weights: dict) -> float:
|
1970 |
"""
|
1971 |
+
計算基礎分數,加強訓練需求評估
|
1972 |
"""
|
1973 |
+
# 基礎閾值保持不變
|
1974 |
critical_thresholds = {
|
1975 |
+
'space': 0.5,
|
1976 |
+
'exercise': 0.5,
|
1977 |
+
'experience': 0.55,
|
1978 |
+
'noise': 0.55
|
1979 |
}
|
1980 |
|
1981 |
+
# 評估訓練需求
|
1982 |
+
training_level = breed_info.get('Training', 'MODERATE').upper()
|
1983 |
+
if training_level == 'HIGH' and user_prefs.experience_level == 'beginner':
|
1984 |
+
# 對需要大量訓練的品種給予較低的基礎分數
|
1985 |
+
base_score = sum(scores[k] * weights[k] for k in scores.keys()) * 0.85
|
1986 |
+
else:
|
1987 |
+
base_score = sum(scores[k] * weights[k] for k in scores.keys())
|
1988 |
+
|
1989 |
+
# 其他評估邏輯保持不變...
|
1990 |
critical_failures = []
|
1991 |
for metric, threshold in critical_thresholds.items():
|
1992 |
if scores[metric] < threshold:
|
1993 |
critical_failures.append((metric, scores[metric]))
|
1994 |
|
|
|
|
|
1995 |
if critical_failures:
|
1996 |
+
penalty = sum((critical_thresholds[metric] - score) * 0.3
|
1997 |
+
for metric, score in critical_failures) / len(critical_failures)
|
1998 |
+
base_score *= (1 - penalty)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1999 |
|
2000 |
if len(critical_failures) > 1:
|
2001 |
+
base_score *= (0.98 ** (len(critical_failures) - 1))
|
2002 |
|
2003 |
return base_score
|
2004 |
|
|
|
2102 |
|
2103 |
|
2104 |
def amplify_score_extreme(score: float) -> float:
|
2105 |
+
"""
|
2106 |
+
優化分數分布,增加區分度
|
2107 |
+
1. 擴大分數區間差異
|
2108 |
+
2. 更合理的分數映射
|
2109 |
+
"""
|
2110 |
def smooth_curve(x: float, steepness: float = 12) -> float:
|
2111 |
import math
|
2112 |
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2113 |
|
2114 |
+
def apply_distinction_factor(base_score: float, distinction: float = 0.05) -> float:
|
2115 |
+
"""增加分數的區分度"""
|
2116 |
+
# 根據原始分數的位置增加區分
|
2117 |
+
position_factor = base_score - int(base_score * 10) / 10
|
2118 |
+
return base_score + (position_factor * distinction)
|
2119 |
+
|
2120 |
if score >= 0.9:
|
2121 |
+
# 優秀匹配:92-100%
|
2122 |
+
base = 0.92 + ((score - 0.9) * 0.08)
|
2123 |
+
return apply_distinction_factor(base, 0.06)
|
2124 |
|
2125 |
elif score >= 0.8:
|
2126 |
+
# 很好匹配:85-92%
|
2127 |
+
base = 0.85 + ((score - 0.8) * 0.07)
|
2128 |
+
return apply_distinction_factor(base, 0.05)
|
2129 |
|
2130 |
elif score >= 0.7:
|
2131 |
+
# 良好匹配:76-85%
|
2132 |
+
base = 0.76 + ((score - 0.7) * 0.09)
|
2133 |
+
return apply_distinction_factor(base, 0.04)
|
2134 |
|
2135 |
elif score >= 0.5:
|
2136 |
+
# 一般匹配:65-76%
|
2137 |
position = (score - 0.5) / 0.2
|
2138 |
+
base = 0.65 + (smooth_curve(position) * 0.11)
|
2139 |
+
return apply_distinction_factor(base, 0.03)
|
2140 |
|
2141 |
else:
|
2142 |
+
# 較低匹配:60-65%
|
2143 |
position = score / 0.5
|
2144 |
+
base = 0.60 + (smooth_curve(position) * 0.05)
|
2145 |
+
return apply_distinction_factor(base, 0.02)
|
2146 |
+
|
2147 |
|
2148 |
# def amplify_score_extreme(score: float) -> float:
|
2149 |
+
# """優化分數分布,提供更高的分數範圍"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2150 |
# def smooth_curve(x: float, steepness: float = 12) -> float:
|
|
|
2151 |
# import math
|
2152 |
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2153 |
|
2154 |
# if score >= 0.9:
|
|
|
2155 |
# position = (score - 0.9) / 0.1
|
2156 |
+
# return 0.96 + (position * 0.04) # 90-100的原始分映射到96-100
|
2157 |
|
2158 |
# elif score >= 0.8:
|
|
|
2159 |
# position = (score - 0.8) / 0.1
|
2160 |
+
# return 0.90 + (position * 0.06) # 80-90的原始分映射到90-96
|
2161 |
|
2162 |
# elif score >= 0.7:
|
|
|
2163 |
# position = (score - 0.7) / 0.1
|
2164 |
+
# return 0.82 + (position * 0.08) # 70-80的原始分映射到82-90
|
2165 |
|
2166 |
# elif score >= 0.5:
|
|
|
2167 |
# position = (score - 0.5) / 0.2
|
2168 |
+
# return 0.75 + (smooth_curve(position) * 0.07) # 50-70的原始分映射到75-82
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2169 |
|
2170 |
# else:
|
2171 |
+
# position = score / 0.5
|
2172 |
+
# return 0.70 + (smooth_curve(position) * 0.05) # 50以下的原始分映射到70-75
|
|
|
|