DawnC commited on
Commit
789716b
1 Parent(s): 63cb3a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -70
app.py CHANGED
@@ -19,7 +19,7 @@ logging.basicConfig(level=logging.DEBUG)
19
  logger = logging.getLogger(__name__)
20
 
21
 
22
- model_yolo = YOLO('yolov8s.pt')
23
 
24
 
25
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
@@ -166,95 +166,58 @@ async def predict_single_dog(image):
166
  return top1_prob, topk_breeds, topk_probs_percent
167
 
168
 
169
- # async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
170
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
171
- # dogs = []
172
- # boxes = []
173
- # for box in results.boxes:
174
- # if box.cls == 16: # COCO dataset class for dog is 16
175
- # xyxy = box.xyxy[0].tolist()
176
- # confidence = box.conf.item()
177
- # boxes.append((xyxy, confidence))
178
-
179
- # if not boxes:
180
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
181
- # else:
182
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
183
-
184
- # for box, confidence in nms_boxes:
185
- # x1, y1, x2, y2 = box
186
- # w, h = x2 - x1, y2 - y1
187
- # x1 = max(0, x1 - w * 0.05)
188
- # y1 = max(0, y1 - h * 0.05)
189
- # x2 = min(image.width, x2 + w * 0.05)
190
- # y2 = min(image.height, y2 + h * 0.05)
191
- # cropped_image = image.crop((x1, y1, x2, y2))
192
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
193
-
194
- # return dogs
195
-
196
-
197
- # def non_max_suppression(boxes, iou_threshold):
198
- # keep = []
199
- # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
200
- # while boxes:
201
- # current = boxes.pop(0)
202
- # keep.append(current)
203
- # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
204
- # return keep
205
-
206
- # def calculate_iou(box1, box2):
207
- # x1 = max(box1[0], box2[0])
208
- # y1 = max(box1[1], box2[1])
209
- # x2 = min(box1[2], box2[2])
210
- # y2 = min(box1[3], box2[3])
211
-
212
- # intersection = max(0, x2 - x1) * max(0, y2 - y1)
213
- # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
214
- # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
215
-
216
- # iou = intersection / float(area1 + area2 - intersection)
217
- # return iou
218
-
219
-
220
- def weighted_nms(boxes, scores, iou_threshold=0.5, score_threshold=0.05):
221
- keep = nms(boxes, scores, iou_threshold)
222
- keep = keep[scores[keep] > score_threshold]
223
- return boxes[keep], scores[keep]
224
-
225
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
226
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
227
  dogs = []
228
  boxes = []
229
- scores = []
230
-
231
  for box in results.boxes:
232
  if box.cls == 16: # COCO dataset class for dog is 16
233
- xyxy = box.xyxy[0]
234
- confidence = box.conf
235
- boxes.append(xyxy)
236
- scores.append(confidence)
237
 
238
  if not boxes:
239
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
240
  else:
241
- boxes = torch.stack(boxes)
242
- scores = torch.stack(scores).squeeze(-1)
243
- nms_boxes, nms_scores = weighted_nms(boxes, scores, iou_threshold=iou_threshold, score_threshold=0.1)
244
 
245
- for box, score in zip(nms_boxes, nms_scores):
246
- x1, y1, x2, y2 = box.tolist()
247
  w, h = x2 - x1, y2 - y1
248
  x1 = max(0, x1 - w * 0.05)
249
  y1 = max(0, y1 - h * 0.05)
250
  x2 = min(image.width, x2 + w * 0.05)
251
  y2 = min(image.height, y2 + h * 0.05)
252
  cropped_image = image.crop((x1, y1, x2, y2))
253
- dogs.append((cropped_image, score.item(), [x1, y1, x2, y2]))
254
 
255
  return dogs
256
 
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  async def process_single_dog(image):
259
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
260
  if top1_prob < 0.15:
 
19
  logger = logging.getLogger(__name__)
20
 
21
 
22
+ model_yolo = YOLO('yolov8l.pt')
23
 
24
 
25
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
 
166
  return top1_prob, topk_breeds, topk_probs_percent
167
 
168
 
169
+ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
171
  dogs = []
172
  boxes = []
 
 
173
  for box in results.boxes:
174
  if box.cls == 16: # COCO dataset class for dog is 16
175
+ xyxy = box.xyxy[0].tolist()
176
+ confidence = box.conf.item()
177
+ boxes.append((xyxy, confidence))
 
178
 
179
  if not boxes:
180
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
181
  else:
182
+ nms_boxes = non_max_suppression(boxes, iou_threshold)
 
 
183
 
184
+ for box, confidence in nms_boxes:
185
+ x1, y1, x2, y2 = box
186
  w, h = x2 - x1, y2 - y1
187
  x1 = max(0, x1 - w * 0.05)
188
  y1 = max(0, y1 - h * 0.05)
189
  x2 = min(image.width, x2 + w * 0.05)
190
  y2 = min(image.height, y2 + h * 0.05)
191
  cropped_image = image.crop((x1, y1, x2, y2))
192
+ dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
193
 
194
  return dogs
195
 
196
 
197
+ def non_max_suppression(boxes, iou_threshold):
198
+ keep = []
199
+ boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
200
+ while boxes:
201
+ current = boxes.pop(0)
202
+ keep.append(current)
203
+ boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
204
+ return keep
205
+
206
+ def calculate_iou(box1, box2):
207
+ x1 = max(box1[0], box2[0])
208
+ y1 = max(box1[1], box2[1])
209
+ x2 = min(box1[2], box2[2])
210
+ y2 = min(box1[3], box2[3])
211
+
212
+ intersection = max(0, x2 - x1) * max(0, y2 - y1)
213
+ area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
214
+ area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
215
+
216
+ iou = intersection / float(area1 + area2 - intersection)
217
+ return iou
218
+
219
+
220
+
221
  async def process_single_dog(image):
222
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
223
  if top1_prob < 0.15: