Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -308,45 +308,74 @@ async def predict(image):
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
311 |
-
#
|
312 |
-
|
313 |
|
314 |
-
if
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
explanation = (
|
322 |
-
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
323 |
-
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
324 |
-
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
325 |
-
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
326 |
-
"Click on a button to view more information about the breed."
|
327 |
-
)
|
328 |
-
breed_buttons = [f"More about {breed}" for breed in topk_breeds[:3]]
|
329 |
-
return explanation, image, gr.update(visible=True, choices=breed_buttons), gr.update(visible=False), gr.update(visible=False)
|
330 |
-
|
331 |
-
else: # top1_prob < 0.2
|
332 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
333 |
|
334 |
except Exception as e:
|
335 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
336 |
|
337 |
-
async def
|
338 |
-
if
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
else:
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
# Gradio 介面設置
|
352 |
with gr.Blocks(css="""
|
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
311 |
+
# First, use YOLO to detect multiple dogs
|
312 |
+
dogs = await detect_multiple_dogs(image)
|
313 |
|
314 |
+
if len(dogs) <= 1:
|
315 |
+
# Single dog or no dog detected, use the original method
|
316 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
317 |
+
return process_single_dog_result(top1_prob, topk_breeds, topk_probs_percent, image)
|
318 |
+
else:
|
319 |
+
# Multiple dogs detected
|
320 |
+
return process_multiple_dogs_result(dogs, image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
except Exception as e:
|
323 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
324 |
|
325 |
+
async def process_single_dog_result(top1_prob, topk_breeds, topk_probs_percent, image):
|
326 |
+
if top1_prob >= 0.5:
|
327 |
+
breed = topk_breeds[0]
|
328 |
+
description = get_dog_description(breed)
|
329 |
+
formatted_description = format_description(description, breed)
|
330 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
331 |
+
elif top1_prob >= 0.2:
|
332 |
+
explanation = (
|
333 |
+
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
334 |
+
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
335 |
+
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
336 |
+
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
337 |
+
"Click on a button to view more information about the breed."
|
338 |
+
)
|
339 |
+
breed_buttons = [f"More about {breed}" for breed in topk_breeds[:3]]
|
340 |
+
return explanation, image, gr.update(visible=True, choices=breed_buttons), gr.update(visible=False), gr.update(visible=False)
|
341 |
+
else:
|
342 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
343 |
+
|
344 |
+
async def process_multiple_dogs_result(dogs, image):
|
345 |
+
annotated_image = image.copy()
|
346 |
+
draw = ImageDraw.Draw(annotated_image)
|
347 |
+
font = ImageFont.load_default()
|
348 |
|
349 |
+
explanations = []
|
350 |
+
buttons = []
|
351 |
+
|
352 |
+
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
353 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
354 |
+
|
355 |
+
draw.rectangle(box, outline="red", width=3)
|
356 |
+
draw.text((box[0], box[1]), f"Dog {i}", fill="yellow", font=font)
|
357 |
+
|
358 |
+
if top1_prob >= 0.5:
|
359 |
+
breed = topk_breeds[0]
|
360 |
+
description = get_dog_description(breed)
|
361 |
+
explanations.append(format_description(description, breed, is_multi_dog=True, dog_number=i))
|
362 |
else:
|
363 |
+
explanation = f"""
|
364 |
+
Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
365 |
+
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
366 |
+
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
367 |
+
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
368 |
+
"""
|
369 |
+
explanations.append(explanation)
|
370 |
+
for breed in topk_breeds:
|
371 |
+
buttons.append(f"More about Dog {i}: {breed}")
|
372 |
+
|
373 |
+
final_explanation = "\n\n---\n\n".join(explanations)
|
374 |
+
|
375 |
+
if buttons:
|
376 |
+
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), gr.update(visible=False), gr.update(visible=False)
|
377 |
+
else:
|
378 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
379 |
|
380 |
# Gradio 介面設置
|
381 |
with gr.Blocks(css="""
|