Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -224,207 +224,53 @@ async def process_single_dog(image):
|
|
224 |
}
|
225 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
226 |
|
227 |
-
async def predict(image):
|
228 |
-
if image is None:
|
229 |
-
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
230 |
-
try:
|
231 |
-
if isinstance(image, np.ndarray):
|
232 |
-
image = Image.fromarray(image)
|
233 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
234 |
-
|
235 |
-
if len(dogs) <= 1:
|
236 |
-
return await process_single_dog(image)
|
237 |
-
|
238 |
-
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
239 |
-
explanations = []
|
240 |
-
buttons = []
|
241 |
-
annotated_image = image.copy()
|
242 |
-
draw = ImageDraw.Draw(annotated_image)
|
243 |
-
font = ImageFont.load_default()
|
244 |
-
|
245 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
246 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
247 |
-
color = color_list[i % len(color_list)]
|
248 |
-
draw.rectangle(box, outline=color, width=3)
|
249 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
250 |
-
|
251 |
-
breed = topk_breeds[0]
|
252 |
-
if top1_prob >= 0.5:
|
253 |
-
description = get_dog_description(breed)
|
254 |
-
formatted_description = format_description(description, breed)
|
255 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
256 |
-
elif top1_prob >= 0.2:
|
257 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
258 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
259 |
-
explanations.append(dog_explanation)
|
260 |
-
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
261 |
-
else:
|
262 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
263 |
-
|
264 |
-
final_explanation = "\n\n".join(explanations)
|
265 |
-
if buttons:
|
266 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
267 |
-
initial_state = {
|
268 |
-
"explanation": final_explanation,
|
269 |
-
"buttons": buttons,
|
270 |
-
"show_back": True,
|
271 |
-
"image": annotated_image,
|
272 |
-
"is_multi_dog": True,
|
273 |
-
"dogs_info": explanations
|
274 |
-
}
|
275 |
-
return (final_explanation, annotated_image,
|
276 |
-
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
277 |
-
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
278 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
279 |
-
gr.update(visible=True),
|
280 |
-
initial_state)
|
281 |
-
else:
|
282 |
-
initial_state = {
|
283 |
-
"explanation": final_explanation,
|
284 |
-
"buttons": [],
|
285 |
-
"show_back": False,
|
286 |
-
"image": annotated_image,
|
287 |
-
"is_multi_dog": True,
|
288 |
-
"dogs_info": explanations
|
289 |
-
}
|
290 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
291 |
-
except Exception as e:
|
292 |
-
error_msg = f"An error occurred: {str(e)}"
|
293 |
-
print(error_msg) # 添加日誌輸出
|
294 |
-
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
|
299 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
300 |
-
# dogs = []
|
301 |
-
|
302 |
-
# image_area = image.width * image.height
|
303 |
-
# min_area_ratio = 0.005 # 最小檢測面積佔整個圖像的比例
|
304 |
-
|
305 |
-
# for box in results.boxes:
|
306 |
-
# if box.cls == 16: # COCO 數據集中狗的類別是 16
|
307 |
-
# xyxy = box.xyxy[0].tolist()
|
308 |
-
# area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
309 |
-
# if area / image_area >= min_area_ratio:
|
310 |
-
# confidence = box.conf.item()
|
311 |
-
# dogs.append((xyxy, confidence))
|
312 |
-
|
313 |
-
# if dogs:
|
314 |
-
# boxes = torch.tensor([dog[0] for dog in dogs])
|
315 |
-
# scores = torch.tensor([dog[1] for dog in dogs])
|
316 |
-
|
317 |
-
# # 應用 NMS
|
318 |
-
# keep = nms(boxes, scores, iou_threshold)
|
319 |
-
|
320 |
-
# merged_dogs = []
|
321 |
-
# for i in keep:
|
322 |
-
# xyxy = boxes[i].tolist()
|
323 |
-
# confidence = scores[i].item()
|
324 |
-
# merged_dogs.append((xyxy, confidence))
|
325 |
-
|
326 |
-
# # 後處理:分離過於接近的檢測框
|
327 |
-
# final_dogs = []
|
328 |
-
# while merged_dogs:
|
329 |
-
# base_dog = merged_dogs.pop(0)
|
330 |
-
# to_merge = [base_dog]
|
331 |
-
|
332 |
-
# i = 0
|
333 |
-
# while i < len(merged_dogs):
|
334 |
-
# iou = box_iou(torch.tensor([base_dog[0]]), torch.tensor([merged_dogs[i][0]]))[0][0].item()
|
335 |
-
# if iou > merge_threshold:
|
336 |
-
# to_merge.append(merged_dogs.pop(i))
|
337 |
-
# else:
|
338 |
-
# i += 1
|
339 |
-
|
340 |
-
# if len(to_merge) == 1:
|
341 |
-
# final_dogs.append(base_dog)
|
342 |
-
# else:
|
343 |
-
# # 如果檢測到多個重疊框,嘗試分離它們
|
344 |
-
# centers = torch.tensor([[((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)] for box, _ in to_merge])
|
345 |
-
# distances = torch.cdist(centers, centers)
|
346 |
-
|
347 |
-
# if torch.any(distances > 0): # 確保不是完全重疊
|
348 |
-
# max_distance = distances.max()
|
349 |
-
# if max_distance > (base_dog[0][2] - base_dog[0][0]) * 0.5: # 如果最大距離大於框寬度的一半
|
350 |
-
# final_dogs.extend(to_merge)
|
351 |
-
# else:
|
352 |
-
# # 合併為一個框
|
353 |
-
# merged_box = torch.tensor([box for box, _ in to_merge]).mean(dim=0)
|
354 |
-
# merged_confidence = max(conf for _, conf in to_merge)
|
355 |
-
# final_dogs.append((merged_box.tolist(), merged_confidence))
|
356 |
-
# else:
|
357 |
-
# # 完全重疊的情況,保留置信度最高的
|
358 |
-
# best_dog = max(to_merge, key=lambda x: x[1])
|
359 |
-
# final_dogs.append(best_dog)
|
360 |
-
|
361 |
-
# # 擴展邊界框並創建剪裁的圖像
|
362 |
-
# expanded_dogs = []
|
363 |
-
# for xyxy, confidence in final_dogs:
|
364 |
-
# expanded_xyxy = [
|
365 |
-
# max(0, xyxy[0] - 20),
|
366 |
-
# max(0, xyxy[1] - 20),
|
367 |
-
# min(image.width, xyxy[2] + 20),
|
368 |
-
# min(image.height, xyxy[3] + 20)
|
369 |
-
# ]
|
370 |
-
# cropped_image = image.crop(expanded_xyxy)
|
371 |
-
# expanded_dogs.append((cropped_image, confidence, expanded_xyxy))
|
372 |
-
|
373 |
-
# return expanded_dogs
|
374 |
-
|
375 |
-
# # 如果沒有檢測到狗狗,返回整張圖片
|
376 |
-
# return [(image, 1.0, [0, 0, image.width, image.height])]
|
377 |
-
|
378 |
# async def predict(image):
|
379 |
# if image is None:
|
380 |
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
381 |
-
|
382 |
# try:
|
383 |
# if isinstance(image, np.ndarray):
|
384 |
# image = Image.fromarray(image)
|
385 |
-
|
386 |
-
# dogs = await detect_multiple_dogs(image)
|
387 |
|
388 |
-
# # 如果沒有檢測到狗狗或只檢測到一隻,使用整張圖像進行分類
|
389 |
# if len(dogs) <= 1:
|
390 |
-
#
|
391 |
-
|
392 |
-
# return await process_single_dog(image)
|
393 |
-
# else:
|
394 |
-
# dogs = [(image, 1.0, [0, 0, image.width, image.height])]
|
395 |
-
|
396 |
-
# # 多狗情境處理保持不變
|
397 |
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
398 |
# explanations = []
|
399 |
# buttons = []
|
400 |
# annotated_image = image.copy()
|
401 |
# draw = ImageDraw.Draw(annotated_image)
|
402 |
# font = ImageFont.load_default()
|
403 |
-
|
404 |
# for i, (cropped_image, _, box) in enumerate(dogs):
|
405 |
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
406 |
# color = color_list[i % len(color_list)]
|
407 |
# draw.rectangle(box, outline=color, width=3)
|
408 |
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
409 |
-
|
410 |
# breed = topk_breeds[0]
|
411 |
# if top1_prob >= 0.5:
|
412 |
# description = get_dog_description(breed)
|
413 |
# formatted_description = format_description(description, breed)
|
414 |
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
415 |
-
#
|
416 |
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
417 |
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
418 |
# explanations.append(dog_explanation)
|
419 |
# buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
420 |
-
|
|
|
|
|
421 |
# final_explanation = "\n\n".join(explanations)
|
422 |
# if buttons:
|
423 |
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
424 |
# initial_state = {
|
425 |
# "explanation": final_explanation,
|
426 |
# "buttons": buttons,
|
427 |
-
# "show_back": True
|
|
|
|
|
|
|
428 |
# }
|
429 |
# return (final_explanation, annotated_image,
|
430 |
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
@@ -436,27 +282,172 @@ async def predict(image):
|
|
436 |
# initial_state = {
|
437 |
# "explanation": final_explanation,
|
438 |
# "buttons": [],
|
439 |
-
# "show_back": False
|
|
|
|
|
|
|
440 |
# }
|
441 |
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
442 |
-
|
443 |
# except Exception as e:
|
444 |
# error_msg = f"An error occurred: {str(e)}"
|
445 |
# print(error_msg) # 添加日誌輸出
|
446 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
def show_details(choice, previous_output, initial_state):
|
451 |
if not choice:
|
452 |
return previous_output, gr.update(visible=True), initial_state
|
453 |
|
454 |
try:
|
455 |
-
breed = choice.split("More about ")
|
456 |
description = get_dog_description(breed)
|
457 |
formatted_description = format_description(description, breed)
|
458 |
|
459 |
-
#
|
460 |
initial_state["current_description"] = formatted_description
|
461 |
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
462 |
|
@@ -471,10 +462,8 @@ def go_back(state):
|
|
471 |
return (
|
472 |
state["explanation"],
|
473 |
state["image"],
|
474 |
-
buttons
|
475 |
-
|
476 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
477 |
-
gr.update(visible=False), # 隱藏 back 按鈕
|
478 |
state
|
479 |
)
|
480 |
|
@@ -488,10 +477,9 @@ with gr.Blocks() as iface:
|
|
488 |
|
489 |
output = gr.Markdown(label="Prediction Results")
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
btn3 = gr.Button("View More 3", visible=False)
|
495 |
|
496 |
back_button = gr.Button("Back", visible=False)
|
497 |
|
@@ -500,20 +488,25 @@ with gr.Blocks() as iface:
|
|
500 |
input_image.change(
|
501 |
predict,
|
502 |
inputs=input_image,
|
503 |
-
outputs=[output, output_image,
|
504 |
)
|
505 |
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
back_button.click(
|
514 |
go_back,
|
515 |
inputs=[initial_state],
|
516 |
-
outputs=[output, output_image,
|
517 |
)
|
518 |
|
519 |
gr.Examples(
|
@@ -524,4 +517,6 @@ with gr.Blocks() as iface:
|
|
524 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
525 |
|
526 |
if __name__ == "__main__":
|
527 |
-
iface.launch()
|
|
|
|
|
|
224 |
}
|
225 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
# async def predict(image):
|
228 |
# if image is None:
|
229 |
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
|
|
230 |
# try:
|
231 |
# if isinstance(image, np.ndarray):
|
232 |
# image = Image.fromarray(image)
|
233 |
+
# dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
|
|
234 |
|
|
|
235 |
# if len(dogs) <= 1:
|
236 |
+
# return await process_single_dog(image)
|
237 |
+
|
|
|
|
|
|
|
|
|
|
|
238 |
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
239 |
# explanations = []
|
240 |
# buttons = []
|
241 |
# annotated_image = image.copy()
|
242 |
# draw = ImageDraw.Draw(annotated_image)
|
243 |
# font = ImageFont.load_default()
|
244 |
+
|
245 |
# for i, (cropped_image, _, box) in enumerate(dogs):
|
246 |
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
247 |
# color = color_list[i % len(color_list)]
|
248 |
# draw.rectangle(box, outline=color, width=3)
|
249 |
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
250 |
+
|
251 |
# breed = topk_breeds[0]
|
252 |
# if top1_prob >= 0.5:
|
253 |
# description = get_dog_description(breed)
|
254 |
# formatted_description = format_description(description, breed)
|
255 |
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
256 |
+
# elif top1_prob >= 0.2:
|
257 |
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
258 |
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
259 |
# explanations.append(dog_explanation)
|
260 |
# buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
261 |
+
# else:
|
262 |
+
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
263 |
+
|
264 |
# final_explanation = "\n\n".join(explanations)
|
265 |
# if buttons:
|
266 |
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
267 |
# initial_state = {
|
268 |
# "explanation": final_explanation,
|
269 |
# "buttons": buttons,
|
270 |
+
# "show_back": True,
|
271 |
+
# "image": annotated_image,
|
272 |
+
# "is_multi_dog": True,
|
273 |
+
# "dogs_info": explanations
|
274 |
# }
|
275 |
# return (final_explanation, annotated_image,
|
276 |
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
|
|
282 |
# initial_state = {
|
283 |
# "explanation": final_explanation,
|
284 |
# "buttons": [],
|
285 |
+
# "show_back": False,
|
286 |
+
# "image": annotated_image,
|
287 |
+
# "is_multi_dog": True,
|
288 |
+
# "dogs_info": explanations
|
289 |
# }
|
290 |
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
|
|
291 |
# except Exception as e:
|
292 |
# error_msg = f"An error occurred: {str(e)}"
|
293 |
# print(error_msg) # 添加日誌輸出
|
294 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
295 |
+
|
296 |
+
|
297 |
+
# def show_details(choice, previous_output, initial_state):
|
298 |
+
# if not choice:
|
299 |
+
# return previous_output, gr.update(visible=True), initial_state
|
300 |
+
|
301 |
+
# try:
|
302 |
+
# breed = choice.split("More about ")[-1]
|
303 |
+
# description = get_dog_description(breed)
|
304 |
+
# formatted_description = format_description(description, breed)
|
305 |
+
|
306 |
+
# # 保存當前描述和原始按鈕狀態
|
307 |
+
# initial_state["current_description"] = formatted_description
|
308 |
+
# initial_state["original_buttons"] = initial_state.get("buttons", [])
|
309 |
|
310 |
+
# return formatted_description, gr.update(visible=True), initial_state
|
311 |
+
# except Exception as e:
|
312 |
+
# error_msg = f"An error occurred while showing details: {e}"
|
313 |
+
# print(error_msg)
|
314 |
+
# return error_msg, gr.update(visible=True), initial_state
|
315 |
+
|
316 |
+
# def go_back(state):
|
317 |
+
# buttons = state.get("buttons", [])
|
318 |
+
# return (
|
319 |
+
# state["explanation"],
|
320 |
+
# state["image"],
|
321 |
+
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
322 |
+
# buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
323 |
+
# buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
324 |
+
# gr.update(visible=False), # 隱藏 back 按鈕
|
325 |
+
# state
|
326 |
+
# )
|
327 |
+
|
328 |
+
# with gr.Blocks() as iface:
|
329 |
+
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
330 |
+
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
331 |
+
|
332 |
+
# with gr.Row():
|
333 |
+
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
334 |
+
# output_image = gr.Image(label="Annotated Image")
|
335 |
+
|
336 |
+
# output = gr.Markdown(label="Prediction Results")
|
337 |
+
|
338 |
+
# with gr.Row():
|
339 |
+
# btn1 = gr.Button("View More 1", visible=False)
|
340 |
+
# btn2 = gr.Button("View More 2", visible=False)
|
341 |
+
# btn3 = gr.Button("View More 3", visible=False)
|
342 |
+
|
343 |
+
# back_button = gr.Button("Back", visible=False)
|
344 |
+
|
345 |
+
# initial_state = gr.State()
|
346 |
+
|
347 |
+
# input_image.change(
|
348 |
+
# predict,
|
349 |
+
# inputs=input_image,
|
350 |
+
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
351 |
+
# )
|
352 |
+
|
353 |
+
# for btn in [btn1, btn2, btn3]:
|
354 |
+
# btn.click(
|
355 |
+
# show_details,
|
356 |
+
# inputs=[btn, output, initial_state],
|
357 |
+
# outputs=[output, back_button, initial_state]
|
358 |
+
# )
|
359 |
+
|
360 |
+
# back_button.click(
|
361 |
+
# go_back,
|
362 |
+
# inputs=[initial_state],
|
363 |
+
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
364 |
+
# )
|
365 |
+
|
366 |
+
# gr.Examples(
|
367 |
+
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
368 |
+
# inputs=input_image
|
369 |
+
# )
|
370 |
+
|
371 |
+
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
372 |
+
|
373 |
+
# if __name__ == "__main__":
|
374 |
+
# iface.launch()
|
375 |
+
|
376 |
+
|
377 |
+
async def predict(image):
|
378 |
+
if image is None:
|
379 |
+
return "Please upload an image to start.", None, [], gr.update(visible=False), None
|
380 |
+
|
381 |
+
try:
|
382 |
+
if isinstance(image, np.ndarray):
|
383 |
+
image = Image.fromarray(image)
|
384 |
+
|
385 |
+
dogs = await detect_multiple_dogs(image)
|
386 |
+
|
387 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
388 |
+
explanations = []
|
389 |
+
buttons = []
|
390 |
+
annotated_image = image.copy()
|
391 |
+
draw = ImageDraw.Draw(annotated_image)
|
392 |
+
font = ImageFont.load_default()
|
393 |
+
|
394 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
395 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
396 |
+
color = color_list[i % len(color_list)]
|
397 |
+
draw.rectangle(box, outline=color, width=3)
|
398 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
399 |
|
400 |
+
if top1_prob >= 0.5:
|
401 |
+
breed = topk_breeds[0]
|
402 |
+
description = get_dog_description(breed)
|
403 |
+
formatted_description = format_description(description, breed)
|
404 |
+
explanations.append(f"Dog {i+1}: {formatted_description}")
|
405 |
+
elif top1_prob >= 0.2:
|
406 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
407 |
+
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
408 |
+
explanations.append(dog_explanation)
|
409 |
+
buttons.extend([gr.Button(f"Dog {i+1}: More about {breed}", visible=True) for breed in topk_breeds[:3]])
|
410 |
+
else:
|
411 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
412 |
+
|
413 |
+
final_explanation = "\n\n".join(explanations)
|
414 |
+
if buttons:
|
415 |
+
final_explanation += "\n\nClick on a button to view more information about the breed."
|
416 |
+
initial_state = {
|
417 |
+
"explanation": final_explanation,
|
418 |
+
"buttons": buttons,
|
419 |
+
"show_back": True,
|
420 |
+
"image": annotated_image,
|
421 |
+
"is_multi_dog": len(dogs) > 1,
|
422 |
+
"dogs_info": explanations
|
423 |
+
}
|
424 |
+
return final_explanation, annotated_image, buttons, gr.update(visible=True), initial_state
|
425 |
+
else:
|
426 |
+
initial_state = {
|
427 |
+
"explanation": final_explanation,
|
428 |
+
"buttons": [],
|
429 |
+
"show_back": False,
|
430 |
+
"image": annotated_image,
|
431 |
+
"is_multi_dog": len(dogs) > 1,
|
432 |
+
"dogs_info": explanations
|
433 |
+
}
|
434 |
+
return final_explanation, annotated_image, [], gr.update(visible=False), initial_state
|
435 |
+
|
436 |
+
except Exception as e:
|
437 |
+
error_msg = f"An error occurred: {str(e)}"
|
438 |
+
print(error_msg) # Add log output
|
439 |
+
return error_msg, None, [], gr.update(visible=False), None
|
440 |
|
441 |
def show_details(choice, previous_output, initial_state):
|
442 |
if not choice:
|
443 |
return previous_output, gr.update(visible=True), initial_state
|
444 |
|
445 |
try:
|
446 |
+
dog_num, breed = choice.split(": More about ")
|
447 |
description = get_dog_description(breed)
|
448 |
formatted_description = format_description(description, breed)
|
449 |
|
450 |
+
# Save current description and original button state
|
451 |
initial_state["current_description"] = formatted_description
|
452 |
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
453 |
|
|
|
462 |
return (
|
463 |
state["explanation"],
|
464 |
state["image"],
|
465 |
+
buttons,
|
466 |
+
gr.update(visible=False), # Hide back button
|
|
|
|
|
467 |
state
|
468 |
)
|
469 |
|
|
|
477 |
|
478 |
output = gr.Markdown(label="Prediction Results")
|
479 |
|
480 |
+
button_group = gr.Group()
|
481 |
+
with button_group:
|
482 |
+
buttons = []
|
|
|
483 |
|
484 |
back_button = gr.Button("Back", visible=False)
|
485 |
|
|
|
488 |
input_image.change(
|
489 |
predict,
|
490 |
inputs=input_image,
|
491 |
+
outputs=[output, output_image, button_group, back_button, initial_state]
|
492 |
)
|
493 |
|
494 |
+
def update_buttons(buttons):
|
495 |
+
button_group.clear()
|
496 |
+
for btn in buttons:
|
497 |
+
button = gr.Button(btn.value)
|
498 |
+
button.click(
|
499 |
+
show_details,
|
500 |
+
inputs=[button, output, initial_state],
|
501 |
+
outputs=[output, back_button, initial_state]
|
502 |
+
)
|
503 |
+
buttons.append(button)
|
504 |
+
return button_group
|
505 |
|
506 |
back_button.click(
|
507 |
go_back,
|
508 |
inputs=[initial_state],
|
509 |
+
outputs=[output, output_image, button_group, back_button, initial_state]
|
510 |
)
|
511 |
|
512 |
gr.Examples(
|
|
|
517 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
518 |
|
519 |
if __name__ == "__main__":
|
520 |
+
iface.launch()
|
521 |
+
|
522 |
+
|