Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -167,59 +167,35 @@ async def predict_single_dog(image):
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
-
|
171 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
-
# dogs = []
|
173 |
-
# boxes = []
|
174 |
-
# for box in results.boxes:
|
175 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
176 |
-
# xyxy = box.xyxy[0].tolist()
|
177 |
-
# confidence = box.conf.item()
|
178 |
-
# boxes.append((xyxy, confidence))
|
179 |
-
|
180 |
-
# if not boxes:
|
181 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
-
# else:
|
183 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
-
|
185 |
-
# for box, confidence in nms_boxes:
|
186 |
-
# x1, y1, x2, y2 = box
|
187 |
-
# w, h = x2 - x1, y2 - y1
|
188 |
-
# x1 = max(0, x1 - w * 0.05)
|
189 |
-
# y1 = max(0, y1 - h * 0.05)
|
190 |
-
# x2 = min(image.width, x2 + w * 0.05)
|
191 |
-
# y2 = min(image.height, y2 + h * 0.05)
|
192 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
193 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
194 |
-
|
195 |
-
# return dogs
|
196 |
-
|
197 |
-
|
198 |
-
async def detect_multiple_dogs(image, conf_threshold=0.4, iou_threshold=0.5):
|
199 |
-
# 提高conf_threshold來減少無效框
|
200 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
201 |
dogs = []
|
202 |
boxes = []
|
203 |
for box in results.boxes:
|
204 |
-
if box.cls == 16: #
|
205 |
xyxy = box.xyxy[0].tolist()
|
206 |
confidence = box.conf.item()
|
207 |
-
|
208 |
-
if confidence >= conf_threshold:
|
209 |
-
boxes.append((xyxy, confidence))
|
210 |
|
211 |
if not boxes:
|
212 |
-
# 沒有檢測到狗,使用整張圖
|
213 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
214 |
else:
|
215 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
|
|
216 |
for box, confidence in nms_boxes:
|
217 |
x1, y1, x2, y2 = box
|
|
|
|
|
|
|
|
|
|
|
218 |
cropped_image = image.crop((x1, y1, x2, y2))
|
219 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
220 |
|
221 |
return dogs
|
222 |
|
|
|
|
|
223 |
def non_max_suppression(boxes, iou_threshold):
|
224 |
keep = []
|
225 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
@@ -291,87 +267,16 @@ async def process_single_dog(image):
|
|
291 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
292 |
|
293 |
|
294 |
-
# async def predict(image):
|
295 |
-
# if image is None:
|
296 |
-
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
297 |
-
|
298 |
-
# try:
|
299 |
-
# if isinstance(image, np.ndarray):
|
300 |
-
# image = Image.fromarray(image)
|
301 |
-
|
302 |
-
# dogs = await detect_multiple_dogs(image)
|
303 |
-
|
304 |
-
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
305 |
-
# explanations = []
|
306 |
-
# buttons = []
|
307 |
-
# annotated_image = image.copy()
|
308 |
-
# draw = ImageDraw.Draw(annotated_image)
|
309 |
-
# font = ImageFont.load_default()
|
310 |
-
|
311 |
-
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
312 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
313 |
-
# color = color_list[i % len(color_list)]
|
314 |
-
# draw.rectangle(box, outline=color, width=3)
|
315 |
-
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
316 |
-
|
317 |
-
# combined_confidence = detection_confidence * top1_prob
|
318 |
-
|
319 |
-
# if top1_prob >= 0.5:
|
320 |
-
# breed = topk_breeds[0]
|
321 |
-
# description = get_dog_description(breed)
|
322 |
-
# formatted_description = format_description(description, breed)
|
323 |
-
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
324 |
-
# elif combined_confidence >= 0.2:
|
325 |
-
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
326 |
-
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
327 |
-
# explanations.append(dog_explanation)
|
328 |
-
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
329 |
-
# else:
|
330 |
-
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
|
331 |
-
|
332 |
-
# final_explanation = "\n\n".join(explanations)
|
333 |
-
# if buttons:
|
334 |
-
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
335 |
-
# initial_state = {
|
336 |
-
# "explanation": final_explanation,
|
337 |
-
# "buttons": buttons,
|
338 |
-
# "show_back": True,
|
339 |
-
# "image": annotated_image,
|
340 |
-
# "is_multi_dog": len(dogs) > 1,
|
341 |
-
# "dogs_info": explanations
|
342 |
-
# }
|
343 |
-
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
344 |
-
# else:
|
345 |
-
# initial_state = {
|
346 |
-
# "explanation": final_explanation,
|
347 |
-
# "buttons": [],
|
348 |
-
# "show_back": False,
|
349 |
-
# "image": annotated_image,
|
350 |
-
# "is_multi_dog": len(dogs) > 1,
|
351 |
-
# "dogs_info": explanations
|
352 |
-
# }
|
353 |
-
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
354 |
-
|
355 |
-
# except Exception as e:
|
356 |
-
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
357 |
-
# print(error_msg)
|
358 |
-
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
359 |
-
|
360 |
-
|
361 |
async def predict(image):
|
362 |
if image is None:
|
363 |
-
return "Please upload an image to start.", None, gr.update(visible=False), None
|
364 |
|
365 |
try:
|
366 |
if isinstance(image, np.ndarray):
|
367 |
image = Image.fromarray(image)
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
dogs = await detect_multiple_dogs(image)
|
372 |
-
else:
|
373 |
-
dogs = [(image, 1.0, [0, 0, image.width, image.height])]
|
374 |
-
|
375 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
376 |
explanations = []
|
377 |
buttons = []
|
@@ -403,9 +308,25 @@ async def predict(image):
|
|
403 |
final_explanation = "\n\n".join(explanations)
|
404 |
if buttons:
|
405 |
final_explanation += "\n\nClick on a button to view more information about the breed."
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
else:
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
except Exception as e:
|
411 |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
@@ -413,6 +334,7 @@ async def predict(image):
|
|
413 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
414 |
|
415 |
|
|
|
416 |
def show_details(choice, previous_output, initial_state):
|
417 |
if not choice:
|
418 |
return previous_output, gr.update(visible=True), initial_state
|
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
dogs = []
|
173 |
boxes = []
|
174 |
for box in results.boxes:
|
175 |
+
if box.cls == 16: # COCO dataset class for dog is 16
|
176 |
xyxy = box.xyxy[0].tolist()
|
177 |
confidence = box.conf.item()
|
178 |
+
boxes.append((xyxy, confidence))
|
|
|
|
|
179 |
|
180 |
if not boxes:
|
|
|
181 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
else:
|
183 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
+
|
185 |
for box, confidence in nms_boxes:
|
186 |
x1, y1, x2, y2 = box
|
187 |
+
w, h = x2 - x1, y2 - y1
|
188 |
+
x1 = max(0, x1 - w * 0.05)
|
189 |
+
y1 = max(0, y1 - h * 0.05)
|
190 |
+
x2 = min(image.width, x2 + w * 0.05)
|
191 |
+
y2 = min(image.height, y2 + h * 0.05)
|
192 |
cropped_image = image.crop((x1, y1, x2, y2))
|
193 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
194 |
|
195 |
return dogs
|
196 |
|
197 |
+
|
198 |
+
|
199 |
def non_max_suppression(boxes, iou_threshold):
|
200 |
keep = []
|
201 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
267 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
268 |
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
async def predict(image):
|
271 |
if image is None:
|
272 |
+
return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
273 |
|
274 |
try:
|
275 |
if isinstance(image, np.ndarray):
|
276 |
image = Image.fromarray(image)
|
277 |
|
278 |
+
dogs = await detect_multiple_dogs(image)
|
279 |
+
|
|
|
|
|
|
|
|
|
280 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
281 |
explanations = []
|
282 |
buttons = []
|
|
|
308 |
final_explanation = "\n\n".join(explanations)
|
309 |
if buttons:
|
310 |
final_explanation += "\n\nClick on a button to view more information about the breed."
|
311 |
+
initial_state = {
|
312 |
+
"explanation": final_explanation,
|
313 |
+
"buttons": buttons,
|
314 |
+
"show_back": True,
|
315 |
+
"image": annotated_image,
|
316 |
+
"is_multi_dog": len(dogs) > 1,
|
317 |
+
"dogs_info": explanations
|
318 |
+
}
|
319 |
+
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
320 |
else:
|
321 |
+
initial_state = {
|
322 |
+
"explanation": final_explanation,
|
323 |
+
"buttons": [],
|
324 |
+
"show_back": False,
|
325 |
+
"image": annotated_image,
|
326 |
+
"is_multi_dog": len(dogs) > 1,
|
327 |
+
"dogs_info": explanations
|
328 |
+
}
|
329 |
+
return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
330 |
|
331 |
except Exception as e:
|
332 |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
|
|
334 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
335 |
|
336 |
|
337 |
+
|
338 |
def show_details(choice, previous_output, initial_state):
|
339 |
if not choice:
|
340 |
return previous_output, gr.update(visible=True), initial_state
|